3 resultados para Mathematical Techniques--Error Analysis

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Man’s never-ending search for better materials and construction methods and for techniques of analysis and design has overcome most of the early difficulties of bridge building. Scour of the stream bed, however, has remained a major cause of bridge failures ever since man learned to place piers and abutments in the stream in order to cross wide rivers. Considering the overall complexity of field conditions, it is not surprising that no generally accepted principles (not even rules of thumb) for the prediction of scour around bridge piers and abutments have evolved from field experience alone. The flow of individual streams exhibits a manifold variation, and great disparity exists among different rivers. The alignment, cross section, discharge, and slope of a stream must all be correlated with the scour phenomenon, and this in turn must be correlated with the characteristics of the bed material ranging from clays and fine silts to gravels and boulders. Finally, the effect of the shape of the obstruction itself-the pier or abutment-must be assessed. Since several of these factors are likely to vary with time to some degree, and since the scour phenomenon as well is inherently unsteady, sorting out the influence of each of the various factors is virtually impossible from field evidence alone. The experimental approach was chosen as the investigative method for this study, but with due recognition of the importance of field measurements and with the realization that the results must be interpreted so as to be compatible with the present-day theories of fluid mechanics and sediment transportation. This approach was chosen because, on the one hand, the factors affecting the scour phenomenon can be controlled in the laboratory to an extent that is not possible in the field, and, on the other hand, the model technique can be used to circumvent the present inadequate understanding of the phenomenon of the movement of sediment by flowing water. In order to obtain optimum results from the laboratory study, the program was arranged at the outset to include a related set of variables in each of several phases into which the whole problem was divided. The phases thus selected were : 1. Geometry of piers and abutments, 2. Hydraulics of the stream, 3. Characteristics of the sediment, 4. Geometry of channel shape and alignment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remote sensing was utilized in the Phase II Cultural Resources Investigation for this project in lieu of extensive excavations. The purpose of the present report is to compare the costs and benefits of the use of remote sensing to the hypothetical use of traditional excavation methods for this project. Estimates for this hypothetical situation are based on the project archaeologist's considerable past experience in conducting similar investigations. Only that part of the Phase II investigation involving field investigations is addressed in this report. Costs for literature review, laboratory analysis, report preparation, etc., are not included. The project manager proposed the use of this technique for the fol lowing logistic, safety and budgetary reasons.