8 resultados para Materials and the technique
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
At the heart of all concrete pavement projects is the concrete itself. This manual is intended as both a training tool and a reference to help concrete paving engineers, quality control personnel, specifiers, contractors, suppliers, technicians, and tradespeople bridge the gap between recent research and practice regarding optimizing the performance of concrete for pavements. Specifically, it will help readers do the following:
Resumo:
Effective winter maintenance makes use of freezing-point-depressant chemicals (also known as ice-control products) to prevent the formation of the bond between snow and ice and the highway pavement. In performing such winter maintenance, the selection of appropriate ice-control products for the bond prevention task involves consideration of a number of factors, as indicated in Nixon and Williams (2001). The factors are in essence performance measurements of the ice-control products, and as such can be easily incorporated into a specification document to allow for selection of the best ice-control products for a given agency to use in its winter maintenance activities. Once performance measures for de-icing or anti-icing chemicals have been specified, this allows the creation of a quality control program for the acceptance of those chemicals. This study presents a series of performance measurement tests for ice-control products, and discusses the role that they can play in such a quality control program. Some tests are simple and rapid enough that they can be performed on every load of icecontrol products received, while for others, a sampling technique must be used. An appropriate sampling technique is presented. Further, each test is categorized as to whether it should be applied to every load of ice-control products or on a sampling basis. The study includes a detailed literature review that considers the performance of ice-control products in three areas: temperature related performance, product consistency, and negative side effects. The negative side effects are further broken down into three areas, namely operational side effects (such as chemical slipperiness), environmental side effects, and infrastructural side effects (such as corrosion of vehicles and damage to concrete). The review indicated that in the area of side effects the field performance of ice-control products is currently so difficult to model in the laboratory that no particular specification tests can be recommended at this time. A study of the impact of ice-control products on concrete was performed by Professor Wang of Iowa State University as a sub-contract to this study, and has been presented to the Iowa Highway Research Board prior to this report.
Resumo:
The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to
Investigation into Improved Pavement Curing Materials and Techniques: Part 2 - Phase III, March 2003
Resumo:
Appropriate curing is important for concrete to obtain the designed properties. This research was conducted to evaluate the curing effects of different curing materials and methods on pavement properties. At present the sprayed curing compound is a common used method for pavement and other concrete structure construction. Three curing compounds were selected for testing. Two different application rates were employed for the white-pigmented liquid curing compounds. The concrete properties of temperature, moisture content, conductivity, and permeability were examined at several test locations. It was found, in this project, that the concrete properties varied with the depth. Of the tests conducted (maturity, sorptivity, permeability, and conductivity), conductivity appears to be the best method to evaluate the curing effects in the field and bears potential for field application. The results indicated that currently approved curing materials in Iowa, when spread uniformly in a single or double application, provide adequate curing protection and meet the goals of the Iowa Department of Transportation. Experimental curing methods can be compared to this method through the use of conductivity testing to determine their application in the field.
Resumo:
Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
This report covers the construction in 1961 of the soil-cement base and related pavement structure on Iowa 37 from Soldier to Dunlap, (F-861(6), Crawford, Harrison, Monona). The report also contains an account of the experimental work performed on the same road under research project HR-75.
Resumo:
The Falling Weight Deflectometer (FWD) has become the "standard" for deflection testing of pavements. Iowa has used a Road Rater since 1976 to obtain deflection information. A correlation between the Road Rater and the FWD was needed if Iowa was going to continue with the Road Rater. Comparative deflection testing was done using a Road Rater Model 400 and a Pynatest 8000 FWD on 26 pavement sections. The SHRP contractor, Braun Intertec Pavement, Inc., provided the FWD testing. The r^2 for the linear correlations ranged from 0.90 to 0.99 for the different pavement types and sensor locations.