5 resultados para Magma batches
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
General principles • Everyone at the construction site, particularly foremen and supervisors, is responsible for recognizing and troubleshooting potential problems as they arise. • Batches of concrete should be consistent and uniformly mixed. • A major cause of pavement failure is unstable subgrade. The subgrade should consist of uniform material, and the subgrade system must drain well. • Dowel bars are important for load transfer at transverse joints on pavements with high truck volumes. Dowels must be carefully aligned, horizontally and vertically, to prevent pavement damage at the joints. • Stringlines control the slipform paver’s horizontal and vertical movement and ensure a smooth pavement profile. Once stringlines are set, they should be checked often and not disturbed. • Overfinishing the new pavement and/or adding water to the surface can lead to pavement surface problems. If the concrete isn’t sufficiently workable, crews should contact the project manager. Changes to the mixture or to paver equipment may reduce the problem. • Proper curing is critical to preventing pavement damage from rapid moisture loss at the pavement surface. • A well spaced and constructed system of joints is critical to prevent random cracking. • Joints are simply controlled cracks. They must be sawed during the brief time after the pavement has gained enough strength to prevent raveling but before it begins to crack randomly (the “sawing window”). • Seasonal and daily weather variations affect setting time and other variables in new concrete. Construction operations should be adjusted appropriately.
Resumo:
This report describes a laboratory evaluation of three asphaltic concrete, plant produced mixtures containing Asphadur. The mixtures represent a type A asphaltic concrete and two type B asphaltic concretes. The type A and one of the type B mixtures were used in pavements and will be evaluated later for durability and serviceability. The second type B mixture was made only for laboratory testing. In each instance, control batches of the same mixtures but without Asphadur were made for comparison. Type A is a high type asphaltic concrete, requires a minimum of 65 percent crushed particles and is generally used for higher traffic volume roads. Type B is used for intermediate or lower traffic volumes and requires a minimum of 30 percent crushed particles.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper-combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100(d/D)^n is not justified. It is recommended that the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3, 960 Marshall and Hveem specimens were examined. The main thrust of the statistical analysis conducted in this experiment was in the calibration study and in Part I of the experiment. In the former study, the compaction procedure between the Iowa State University Lab and the Iowa Highway Commission Lab was calibrated. By an analysis of the errors associated with the measurements we were able to separate the "preparation" and "determination" errors for both laboratories as well as develop the calibration curve which describes the relationship between the compaction procedures at the two labs. In Part I, the use of a fractional factorial design in a split plot experiment in measuring the effect of several factors on asphalt concrete strength and weight was exhibited. Also, the use of half normal plotting techniques for indicating significant factors and interactions and for estimating errors in experiments with only a limited number of observations was outlined,
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100 (d/D)n is not justified. It is recommended that. the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.