2 resultados para MELCOR 2.1
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.
Resumo:
The Iowa Department of Transportation began creep and resilient modulus testing of asphalt concrete mixtures in 1989. Part 1 of this research reported in January 1990 was a laboratory study of hot mix asphalt (HMA) mixtures made with O, 30, 60, 85 and 100% crushed gravel, crushed limestone and crushed quartzite combined with uncrushed sand and gravel. Creep test results from Marshall specimens related well to the percent of crushed particles and the perceived resistance to rutting. The objective of this research, part 2, was to determine if there was a meaningful correlation between pavement rut depth and the resilient modulus or the creep resistance factor. Four and six inch diameter cores were drilled from rutted primary and interstate pavements and interstate pavements with design changes intended to resist rutting. The top 2 1/2 inches of each core, most of which was surface course, was used for creep and resilient modulus testing. There is a good correlation between the resilient modulus of four and six inch diameter cores. Creep resistance factors of four and six inch diameter cores also correlated well. There is a poor correlation between resilient modulus and the creep resistance factor. The rut depth per million 18,000 pound equivalent single axle loadings (ESAL) for these pavements did not correlate well with either the resilient modulus or the creep resistance factor.