3 resultados para M-PLANE GAN(1(1)OVER-BAR-00)
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
The Iowa road system has approximately 13,000 miles of Portland Cement Concrete Pavements, many of which are reaching the stage where major rehabilitation is required. Age, greater than anticipated traffic, heavier loads and deterioration related to coarse aggregate in the original pavement are some of the reasons that these pavements have reached this level of distress. One method utilized to rehabilitate distressed or underdesigned PCC pavements is the thin bonded Portland Cement Concrete overlay. Since the introduction of thin bonded overlays on highway pavements in 1973, the concrete paving industry has made progress in reducing the construction costs of this rehabilitation technique. With the advent of the shotblast machine, surface preparation costs have decreased from over $4.00 per square yard to most recently $1.42 per square yard. Other construction costs, including placement, grouting and sawing, have also declined. With each project, knowledge and efficiency have improved.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.