7 resultados para Músicos de rap

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asphalt pavement recycling has grown dramatically over the last few years as a viable technology to rehabilitate existing asphalt pavements. Iowa's current Cold In-place Recycling (CIR) practice utilizes a generic recipe specification to define the characteristics of the CIR mixture. As CIR continues to evolve, the desire to place CIR mixture with specific engineering properties requires the use of a mix design process. A new mix design procedure was developed for Cold In-place Recycling using foamed asphalt (CIR-foam) in consideration of its predicted field performance. The new laboratory mix design process was validated against various Reclaimed Asphalt Pavement (RAP) materials to determine its consistency over a wide range of RAP materials available throughout Iowa. The performance tests, which include dynamic modulus test, dynamic creep test and raveling test, were conducted to evaluate the consistency of a new CIR-foam mix design process to ensure reliable mixture performance over a wide range of traffic and climatic conditions. The “lab designed” CIR will allow the pavement designer to take the properties of the CIR into account when determining the overlay thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt (HMA) mixes. The objectives of this study are to test the binder and mix properties of WMA technologies for both field- and laboratory-produced mixes to determine the performance of WMA compared to traditional HMA. Field- and laboratory-produced mixes were studied. The laboratory-produced mixes compared HMA control mixes with WMA mixes that had the same mix design. The WMA technologies used for the laboratory study were Advera, Sasobit, and Evotherm. The field study tested four WMA field-produced mixes. Each of the four mixes had a corresponding control HMA mix. The WMA technologies used in the field study included: Evotherm 3G/Revix, Sasobit, and Double Barrel Green Foaming. The three main factors for this study were WMA/HMA, moisture-conditioned/not moisture-conditioned, and reheated/not reheated. Mixes were evaluated based on performance tests. Binder testing was performed to determine the rheological differences between HMA and WMA binders to determine if binder grade requirements change with the addition of WMA additives. The conclusions of this study are as follows:  Reduced mixing and compaction temperatures were achieved.  Statistical differences were found when comparing tensile strength ratio (TSR) values for both laboratory- and field-produced mixes. In the laboratory, none of the WMA additives performed as well as the HMA. For the field mixes, all TSR values passed Iowa’s minimum specification of 0.8 but, on average, WMA is lower compared to HMA TSR values.  Dynamic modulus results show that, on average, HMA will have higher dynamic modulus values. This means the HMA exhibits stiffer material properties compared to WMA; this may not necessarily mean superior performance in all cases.  Flow number results show that WMA has reduced flow number values compared to HMA. The only exception was the fourth field mix and weather delayed production of the control mix by nine days. The laboratory mixes showed that flow number values increased significantly with the addition of recycled asphalt pavement (RAP).  In the laboratory study, Advera reduced TSR values. Given that Advera is a foaming agent, the increase in moisture susceptibility is likely attributed to the release of water necessary for the improvement of the workability of the asphalt mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS- 1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this research is to examine the effects that different methods of RAP stockpile fractionation would have on the volumetric mix design properties for high-RAP content surface mixes, with the goal of meeting all specified criteria for standard HMA mix designs. To determine the distribution of fine aggregates and binder in RAP stockpile, RAP materials were divided by each sieve size. The composition of RAP materials retained on each sieve was analyzed to determine the optimum fractionation method. Fractionation methods were designed to separate the stockpile at a specified sieve size to control the amount of fine RAP materials which contain higher amounts of fine aggregates and dust contents. These fine RAP materials were used in reduced proportions or completely eliminated, thereby decreasing the amount of fine aggregate materials introduced to the mix. Mix designs were performed using RAP materials from four different stockpiles and the two fractionated methods were used with high-RAP contents up to 50% by virgin binder replacement. By using a fractionation method, a mix with up to 50% RAP was successfully designed while meeting all Superpave criteria and asphalt film thickness requirement by controlling the dust content from RAP stockpiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.