8 resultados para Low Speed Switched Reluctance Machine
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.
Resumo:
In April 1991 the Iowa Department of Transportation, the CNW Transportation Company, the SOO Line, and local agencies and business in the Mason City/Clear Lake area initiated an Operation Lifesaver program to attempt to increase public awareness of safety issues and safe behavior at railroad-highway grade crossings. This document reports an initial study of data on traffic characteristics at a selected set of grade crossings in Cerro Gordo County taken before and after the safety program. Twenty-two crossings were studied. The 13 crossings at which collisions were reported for the five years prior to the study were included in the sample of sites. Two field observations were made at each study crossing before the Operation Lifesaver campaign was in full swing, and two observations were made after the conclusion of the main effort of the campaign. The summary of each data set is contained in a companion volume. The research shows that Operation Lifesaver altered drivers' behavior in the following ways: (1) reduced approach speeds and crossing speeds at crossings with low speed limits, (2) reduced the percent of drivers approaching the crossing at speeds in excess of the posted speed limit, and (3) increased alertness of drivers to railroad crossing hazards as evidenced by more drivers looking for a clear track. Thus, Operation Lifesaver enhanced safety in street and highway traffic operations in the vicinity of railroad-highway grade crossings.
Resumo:
The primary objective of this toolbox is to summarize various known traffic-calming treatments and their effectiveness. This toolbox focuses on roadway-based treatments for speed management, particularly for rural communities with transition zones. Education, enforcement, and policy strategies should also be considered, but are not the focus of this toolbox. The research team identified treatments based on their own research, a review of the literature, and discussion with other professionals. This toolbox describes each treatment and summarizes placement, advantages, disadvantages, effectiveness, appropriateness, and cost for each treatment. The categories of treatments covered in this toolbox are as follows: horizontal physical displacement, vertical physical displacement, narrowing, surroundings, pavement markings, traffic control signs, and other strategies. Separate 3- to 4-page Tech Briefs for various aspects of this toolbox are attached to this record: Center Islands with Raised Curbing for Rural Traffic Calming, Colored Entrance Treatments for Rural Traffic Calming, Dynamic Speed Feedback Signs for Rural Traffic Calming, Transverse Speed Bars for Rural Traffic Calming. This toolbox and the tech briefs are related to the report Evaluation of Low Cost Traffic Calming for Rural Communities – Phase II, which is also included in this record or can be found at http://publications.iowa.gov/id/eprint/14769
Resumo:
Left-turning traffic is a major source of conflicts at intersections. Though an average of only 10% to 15% of all approach traffic turns left, these vehicles are involved in approximately 45% of all accidents. This report presents the results of research conducted to develop models which estimate approach accident rates at high speed signalized intersections. The objective of the research was to quantify the relationship between traffic and intersection characteristics, and accident potential of different left turn treatments. Geometric, turning movement counts, and traffic signal phasing data were collected at 100 intersections in Iowa using a questionnaire sent to municipalities. Not all questionnaires resulted in complete data and ultimately complete data were derived for 63 intersections providing a database of 248 approaches. Accident data for the same approaches were obtained from the Iowa Department of Transportation Accident Location and Analysis System (ALAS). Regression models were developed for two different dependent variables: 1) the ratio of the number of left turn accidents per approach to million left turning vehicles per approach, and 2) the ratio of accidents per approach to million traffic movements per approach. A number of regression models were developed for both dependent variables. One model using each dependent variable was developed for intersections with low, medium, and high left turning traffic volumes. As expected, the research indicates that protected left turn phasing has a lower accident potential than protected/permitted or permitted phasing. Left turn lanes and multiple lane approaches are beneficial for reducing accident rates, while raised medians increase the likelihood of accidents. Signals that are part of a signal system tend to have lower accident rates than isolated signals. The resulting regression models may be used to determine the likely impact of various left turn treatments on intersection accident rates. When designing an intersection approach, a traffic engineer may use the models to estimate the accident rate reduction as a result of improved lane configurations and left turn treatments. The safety benefits may then be compared to any costs associated with operational effects to the intersection (i.e., increased delay) to determine the benefits and costs of making intersection safety improvements.
Resumo:
The current shortage of highway funds precludes the immediate replacement of most of the bridges that have been evaluated as structurally deficient or functionally obsolete or both. A low water stream crossing (LWSC) affords an economical alternative to the replacement of a bridge with another bridge in many instances. However, the potential liability that might be incurred from the use of LWSCs has served as a deterrent to their use. Nor have guidelines for traffic control devices been developed for specific application to LWSCs. This research addressed the problems of liability and traffic control associated with the use of LWSCs. Input to the findings from this research was provided by several persons contacted by telephone plus 189 persons who responded to a questionnaire concerning their experience with LWSCs. It was concluded from this research that a significant potential for accidents and liability claims could result from the use of LWSCs. However, it was also concluded that this liability could be reduced to within acceptable limits if adequate warning of the presence of an LWSC were afforded to road users. The potential for accidents and liability could further be reduced if vehicular passage over an LWSC were precluded during periods when the road was flooded. Under these conditions, it is believed, the potential for liability from the use of an LWSC on an unpaved, rural road would be even less than that resulting from the continuing use of an inadequate bridge. The signs recommended for use in advance of an LWSC include two warning signs and one regulatory sign with legends as follows: FLOOD AREA AHEAD, IMPASSABLE DURING HIGH WATER, DO NOT ENTER WHEN FLOODED. Use of the regulatory sign would require an appropriate resolution by the Board of Supervisors having responsibility for a county road. Other recommendations include the optional use of either a supple mental distance advisory plate or an advisory speed plate, or both, under circumstances where these may be needed. It was also recommended HR-218 Liability & Traffic Control Considerations for Low Water Stream Crossings that LWSCs be used only on unpaved roads and that they not be used in locations where flooding of an LWSC would deprive dwelling places of emergency ground access.
Resumo:
Many rural communities have developed around highways or major county roads; as a result, the main street through small rural communities is often part of a high-speed rural highway. Highways and county roads are characterized by high speeds outside the city limits; they then transition into a reduced speed section through the rural community. Consequently, drivers passing through the community often enter at high speeds and maintain those speeds as they travel through the community. Traffic calming in small rural communities along major roadways is common in Europe, but the U.S. does not have experience with applying traffic-calming measures outside of major urban areas. The purpose of the project was to evaluate traffic-calming treatments on the major road through small Iowa communities using either single-measure low-cost or gateway treatments. The project was partially funded by the Iowa Highway Research Board (IHRB). The focus of the IHRB portion was to evaluate single-measure, low-cost, traffic-calming measures that are appropriate to major roads through small rural communities. Seven different low-cost traffic treatments were implemented and evaluated in five rural Iowa communities. The research evaluated the use of two gateway treatments in Union and Roland; five single-measure treatments (speed table, on-pavement “SLOW” markings, a driver speed feedback sign, tubular markers, and on-pavement entrance treatments) were evaluated in Gilbert, Slater, and Dexter.
Resumo:
The objective of this project was to evaluate low-cost measures to reduce speeds on high-crash horizontal curves. The researchers evaluated two low-cost treatments in Iowa to determine their effectiveness in reducing speeds on rural two-lane roadways. This report summarizes how the research team selected sites and collected data, and the results. The team selected six sites. Retroreflective post treatments were added to existing chevrons at four sites and on-pavement curve markings were added at two sites. The researchers collected speed data before and after installation of the two treatments. The study compared several speed metrics to assess the effectiveness of the treatments. Overall, both were moderately effective in reducing speeds. The most significant impact of the treatments was in reducing the percentage of vehicles traveling over the posted or advisory speed by 5, 10, 15, or 20 or more mph. This result suggests that the treatments are most effective in reducing high-end speeds.