14 resultados para Locating payload
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
With its central U.S. location, access to a plethora of agricultural raw materials, a highly educated and skilled workforce, and a supportive state government; food and ingredient manufacturers find many advantages to locating in Iowa. Another major plus for Iowa’s food makers is access to one of the strongest food science and human nutrition programs in the nation, located on the campus of Iowa State University (ISU). At ISU, you will find scientists who will assist your organization in bringing food related innovations in plant, animal and microbial products to commercialization. The Department of Food Sciences and Human Nutrition (FSHN) is jointly administered by the Colleges of Agriculture and Life Sciences and Human Sciences. Our mission is to generate new knowledge around food and human nutrition and to promote health through food.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. FHWA also approves the decisions to provide full access between West Broadway and I-29, design the I-80/I-29 overlap section as a dual-divided freeway, and locating the new I-80 Missouri River Bridge north of the existing bridge. Improvements to the interstate system, once implemented, would bring the segments of I-80 and I-29 (see Figure 1) up to current engineering standards and accommodate future traffic needs. This Record of Decision (ROD) concludes Tier 1 of the Council Bluffs Interstate System (CBIS) Improvements Project. Tier 1 included an examination of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation consisted of a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. During Tier 1 a Draft EIS (FHWA-IA- EIS-04-01D) was developed which was approved by FHWA, Iowa DOT, and Nebraska Department of Roads (NDOR) in November 2004 with comments accepted through March 15, 2005. The Draft EIS summarized the alternatives that were considered to address the transportation needs around Council Bluffs; identified reconstruction of all or part of the interstate, the “Construction Alternative,” as the Preferred Alternative; identified three system-level decisions that needed to be made at the Tier 1 level; and invited comment on the issues. The Final EIS (FHWA-IA- EIS-04-01F) further documented the Construction Alternative as the Preferred Alternative and identified the recommended decisions for the three system level decisions that needed to be made in Tier 1. This ROD defines the Selected Alternative determined in the Tier 1 studies.
Resumo:
The state Senator and state Representative from each district are elected to represent constituent interests when making the laws of Iowa. Citizens can take part in the decisions made by those elected officials. For locating constituent Senators and Representatives, or to learn more about the Iowa Legislature, contact the Legislative Information Office (LIO).
Resumo:
The state Senator and state Representative from each district are elected to represent constituent interests when making the laws of Iowa. Citizens can take part in the decisions made by those elected officials. For locating constituent Senators and Representatives, or to learn more about the Iowa Legislature, contact the Legislative Information Office (LIO). This document includes a organizational chart of the General Assembly.
Resumo:
The primary purpose of this project was to assess the potential of a nondestructive remote sensing system, specifically, ground penetrating subsurface interface radar, for identification and evaluation of D-cracking pavement failures. A secondary purpose was to evaluate the effectiveness of this technique for locating voids under pavements and determining the location of steel reinforcement. From the data collected and the analysis performed to date, the following conclusions can be made regarding the ground penetrating radar system used for this study: (1) steel reinforcement can be accurately located; (2) pavement thickness can be determined; (3) distressed areas in pavements can be located and broadly classified as to severity of deterioration; (4) voids under pavements can be located; and (5) higher resolution recording equipment is required to accurately determine both the thickness of sound pavement remaining over distressed areas and the depth of void areas under pavements.
Resumo:
The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.
Resumo:
A compilation of sample pages from various employment statistical reports issued by Iowa Workforce Development (IWD), including URLs for locating electronic versions of the reports online at the IWD website
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
This report is the product of a first-year research project in the University Transportation Centers Program. This project was carried out by an interdisciplinary research team at The University of Iowa's Public Policy Center. The project developed a computerized system to support decisions on locating facilities that serve rural areas while minimizing transportation costs. The system integrates transportation databases with algorithms that specify efficient locations and allocate demand efficiently to service regions; the results of these algorithms are used interactively by decision makers. The authors developed documentation for the system so that others could apply it to estimate the transportation and route requirements of alternative locations and identify locations that meet certain criteria with the least cost. The system was developed and tested on two transportation-related problems in Iowa, and this report uses these applications to illustrate how the system can be used.
Resumo:
The purpose of this project was to evaluate the location and quantities of debonding in selected portland cement concrete (PCC) overlays. The project entailed an infrared thermographic survey and a ground penetrating radar survey of the PCC overlays to locate areas of debonding between the overlays and the original pavement. An infrared scanner is capable of locating these areas because of the temperature differential which is established between bonded and debonded areas under certain environmental conditions. A conventional video inspection of the top surface of the pavement was also completed in conjunction with the infrared thermographic survey to record the visual condition of the pavement surface. The ground penetrating radar system is capable of locating areas of debonding by detecting return wave forms generated by changes in the dielectric properties at the PCC overlay original pavement interface. This report consists of two parts; a text and a set of plan sheets. The text summarizes the procedures, analyses and conclusions of the investigation. The plan sheets locate specific areas of debonding, as identified through field observations.
Resumo:
The Iowa Statewide Recreational Trails Plan was developed in response to the State Legislature's recognition of the increased public demand for quality outdoor recreational facilities and the numerous benefits associated with the development and usage of trail systems. The plan presents a statewide trails system that will serve as a basis for trail planning efforts throughout the state. Included are design guidelines for each of the major trail modes contained within the plan including bike, hiking, cross-country skiing, snowmobiling, off-road vehicles, and equestrian, as well as for locating trails within the highway right-of-way. Also included are estimates of implementation costs and financing alternatives. This report contains the complete plan. Separately bound documents include the Executive Summary and two additional appendices: (1) Trails Plan Resource Inventory and (2) Summary of Public Comments and Summary of Technical Advisory Committee Comments.