6 resultados para Laboratory characterization

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the desired level of accuracy. The primary objective of this research was to develop a laboratory testing program utilizing the Iowa DOT servo-hydraulic machine system for evaluating typical Iowa unbound materials and to establish a database of input values for MEPDG analysis. This was achieved by carrying out a detailed laboratory testing program designed in accordance with the AASHTO T307 resilient modulus test protocol using common Iowa unbound materials. The program included laboratory tests to characterize basic physical properties of the unbound materials, specimen preparation and repeated load triaxial tests to determine the resilient modulus. The MEPDG resilient modulus input parameter library for Iowa typical unbound pavement materials was established from the repeated load triaxial MR test results. This library includes the non-linear, stress-dependent resilient modulus model coefficients values for level 1 analysis, the unbound material properties values correlated to resilient modulus for level 2 analysis, and the typical resilient modulus values for level 3 analysis. The resilient modulus input parameters library can be utilized when designing low volume roads in the absence of any basic soil testing. Based on the results of this study, the use of level 2 analysis for MEPDG resilient modulus input is recommended since the repeated load triaxial test for level 1 analysis is complicated, time consuming, expensive, and requires sophisticated equipment and skilled operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent construction of new generation power plants burning western coal within Iowa has resulted in fly Ash production on the order of 760,000 tons annually. Although fly ash has long been accepted as a valuable replacement for portland cement in concrete, most experience has been with fly ash generated from eastern bituminous coals. A few years ago, fly ash in Iowa was not a significant factor because production was small and economics dictated disposal as the better alternative than construction use. Today, the economic climate, coupled with abundance of the material, makes constructive use in concrete feasible. The problem is, however, fly ash produced from new power plants is different than that for which information was available. It seems fly ash types have outgrown existing standards. The objective of this study was to develop fundamental information about fly ashes available to construction in Iowa such that its advantages and limitations as replacement to portland cement can be defined. Evaluative techniques used in this work involve sophisticated laboratory equipment, not readily available to potential fly ash users, so a second goal was preliminary development of rapid diagnostic tests founded on fundamental information. Lastly, Iowa Department of Transportation research indicated an interesting interdependency among coarse aggregate type, fly ash and concrete's resistance to freeze-thaw action. Thus a third charge of this research project was to verify and determine the cause for the phenomena. One objective of this project was to determine properties of Iowa fly ashes and evaluate their relevance to use of the material as an admixture of PCC. This phase of the research involved two approaches. The first involved the development of a rapid method for determining quantitative elemental composition while the second was aimed at both qualitative and quantitative determination of compounds. X-ray fluorescence techniques were adapted for rapid determination of elemental composition of fly ash. The analysis was performed using a Siemens SR-200 sequential x-ray spectrometer controlled by a PDP-11-03 microcomputer. The spectrometer was equipped with a ten sample specimen chamber and four interchangeable analyzing crystals. Unfiltered excitation radiation was generated using a chromium tube at 50 KV and 48 ma. Programs for the spectrometer were developed by the Siemens Corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Characterization of slope failures is complicated, because the factors affecting slope stability can be difficult to discern and measure, particularly soil shear strength parameters. While in the past extensive research has been conducted on slope stability investigations and analysis, this research consists of field investigations addressing both the characterization and reinforcement of such slope failures. The current research focuses on applying an infrequently-used testing technique comprised of the Borehole Shear Test (BST). This in-situ test rapidly provides effective (i.e., drained) shear strength parameter values of soil. Using the BST device, fifteen Iowa slopes (fourteen failures and one proposed slope) were investigated and documented. Particular attention was paid to highly weathered shale and glacial till soil deposits, which have both been associated with slope failures in the southern Iowa drift region. Conventional laboratory tests including direct shear tests, triaxial compression tests, and ring shear tests were also performed on undisturbed and reconstituted soil samples to supplement BST results. The shear strength measurements were incorporated into complete evaluations of slope stability using both limit equilibrium and probabilistic analyses. The research methods and findings of these investigations are summarized in Volume 1 of this report. Research details of the independent characterization and reinforcement investigations are provided in Volumes 2 and 3, respectively. Combined, the field investigations offer guidance on identifying the factors that affect slope stability at a particular location and also on designing slope reinforcement using pile elements for cases where remedial measures are necessary. The research findings are expected to benefit civil and geotechnical engineers of government transportation agencies, consultants, and contractors dealing with slope stability, slope remediation, and geotechnical testing in Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. While in the past extensive research has been conducted on slope stability investigations and analysis, this current research study consists of field investigations addressing both the characterization and reinforcement of such slope failures. While Volume I summarizes the research methods and findings of this study, Volume II provides procedural details for incorporating an infrequently-used testing technique, borehole shear tests, into practice. Fifteen slopes along Iowa highways were investigated, including thirteen slides (failed slopes), one unfailed slope, and one proposed embankment slope (the Sugar Creek Project). The slopes are mainly comprised of either clay shale or glacial till, and are generally gentle and of small scale, with slope angle ranging from 11 deg to 23 deg and height ranging from 6 to 23 m. Extensive field investigations and laboratory tests were performed for each slope. Field investigations included survey of slope geometry, borehole drilling, soil sampling, in-situ Borehole Shear Testing (BST) and ground water table measurement. Laboratory investigations mainly comprised of ring shear tests, soil basic property tests (grain size analysis and Atterberg limits test), mineralogy analyses, soil classifications, and natural water contents and density measurements on the representative soil samples from each slope. Extensive direct shear tests and a few triaxial compression tests and unconfined compression tests were also performed on undisturbed soil samples for the Sugar Creek Project. Based on the results of field and lab investigations, slope stability analysis was performed on each of the slopes to determine the possible factors resulting in the slope failures or to evaluate the potential slope instabilities using limit equilibrium methods. Deterministic slope analyses were performed for all the slopes. Probabilistic slope analysis and sensitivity study were also performed for the slope of the Sugar Creek Project. Results indicate that while the in-situ test rapidly provides effective shear strength parameters of soils, some training may be required for effective and appropriate use of the BST. Also, it is primarily intended to test cohesive soils and can produce erroneous results in gravelly soils. Additionally, the quality of boreholes affects test results, and disturbance to borehole walls should be minimized before test performance. A final limitation of widespread borehole shear testing may be its limited availability, as only about four to six test devices are currently being used in Iowa. Based on the data gathered in the field testing, reinforcement investigations are continued in Volume III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AASHTO strategic plan in 2005 for bridge engineering identified extending the service life of bridges and accelerating bridge construction as two of the grand challenges in bridge engineering. These challenges have the objective of producing safer and more economical bridges at a faster rate with a minimum service life of 75 years and reduced maintenance cost to serve the country’s infrastructure needs. Previous studies have shown that a prefabricated full-depth precast concrete deck system is an innovative technique that accelerates the rehabilitation process of a bridge deck, extending its service life with reduced user delays and community disruptions and lowering its life-cycle costs. Previous use of ultra-high performance concrete (UHPC) for bridge applications in the United States has been considered to be efficient and economical because of its superior structural characteristics and durability properties. Full-depth UHPC waffle deck panel systems have been developed over the past three years in Europe and the United States. Subsequently, a single span, 60-ft long and 33-ft wide prototype bridge with full-depth prefabricated UHPC waffle deck panels has been designed and built for a replacement bridge in Wapello County, Iowa. The structural performance characteristics and the constructability of the UHPC waffle deck system and its critical connections were studied through an experimental program at the structural laboratory of Iowa State University (ISU). Two prefabricated full-depth UHPC waffle deck (8 feet by 9 feet 9 inches by 8 inches) panels were connected to 24-ft long precast girders, and the system was tested under service, fatigue, overload, and ultimate loads. Three months after the completion of the bridge with waffle deck system, it was load tested under live loads in February 2012. The measured strain and deflection values were within the acceptable limits, validating the structural performance of the bridge deck. Based on the laboratory test results, observations, field testing of the prototype bridge, and experience gained from the sequence of construction events such as panel fabrication and casting of transverse and longitudinal joints, a prefabricated UHPC waffle deck system is found to be a viable option to achieve the goals of the AASHTO strategic plan.