21 resultados para LOESS PLATEAU

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between the properties and the water content of an undisturbed loess were investigated to provide insight into the mechanical behavior of the natural soil. Hand-carved samples from a single deposit, at their natural water contents, and at water contents modified in the laboratory to provide a range from 870 to 3270, were subjected to unconsolidated-undrained triaxial compression tests, consolidation tests, and initial negative pore water pressure tests. In addition, the clay-size fraction was separated from the remainder of the loess for a separate series of tests to establish its properties. The natural water content of the deposit in the field was measured at regular intervals for one year to provide an example of the range in properties that would be encountered. at this site. The test results are presented and their interpretation leads to conclusions regarding the volumetric relations that exist as the water content varies. The significance of the water content in relation to the properties of the natural soil is explored and the concept of a critical water content for loess is introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain areas of Iowa abound in loess, others contain soft limestones that are readily and cheaply available, and a large portion of the state is underlaid with sand. None of these materials is considered suitable in present practices for use in all-weather road construction. The loess is too fine and too difficult to handle; the limestones are considered too soft, and some of the harder ones unsound for this use; the sands are not naturally of the desired gradation and do not lend themselves to blending into satisfactory gradations. The purpose of this project is, therefore, to study and develop means and to determine the feasibility of using these materials, loess, fine sand, and soft limestones, either separately or in combinations in conjunction with liquid binders to produce paving mixtures applicable for all-weather road construction. Also included in the project was the development of methods of processing any of these materials, if necessary, to make them suitable for the desired purpose

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective stress paths for a loessial soil subject to collapse during confined compression have been determined from the results of a testing program consisting of (1) confined compression tests on natural samples of loess with initial water contents ranging from air-dry to saturation, (2) negative pore-water pressure measurements to -300 psi during these tests, and (3) Ko-tests in which the lateral stress ratio was measured for one-dimensional strain. Before collapse, Ko was found to average 0.23, an extremely low value for a loose soil, whereas after collapse, Ko increased to 0.54, which is consistent with values for other soils. Because of the low Ko-values before collapse, the effective stress path for loading in confined compression initially approaches the failure envelope. At collapse the stress path intersects the failure envelope and thereafter it changes direction as a consequence of the higher Ko-value after collapse. From the stress path interpretation of the results, it is demonstrated that the collapse mechanism of loess in confined compression and during wetting is a shear phenomenon and subject of analysis in terms of effective stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Known as one of North America’s natural treasures, the Loess Hills is also one of our country’s archaeological gems. This unique landscape harbors hundreds of well-preserved earth lodge dwellings and palisades villages built by ancestral Plains Indians. The descendants of these early Iowa farmers were first described in the journals and accounts of 18th- and 19th-century travelers and explorers. Celebrated artists, such as Karl Bodmer and George Catlin, forever fixed the vibrant life ways of these people in our mind’s eye. The historical legacy of the Loess Hills lies in a rich archaeological record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On today’s ride we continue riding across the Southern Iowa Drift Plain. This landform region covers over 40% of the state and comprises most of southern Iowa. Over the last several million years Iowa was subjected to at least seven glacial advances. The last of these older advances occurred approximately 500,000 years ago. Since then the landscape has been subjected to stream erosion and from12,500-24,000 years ago was mantled with a thick blanket of loess before being further eroded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although during much of its geologic history Iowa was part of an interior sea, today what we see on the land surface has been heavily influenced by recent glaciation. Everything from Iowa soils, rivers, lakes, and hills has been influenced by glaciation. Most of Iowa’s bedrock is hidden beneath a thick mantle of deposits from the Cenozoic (i.e., new life) Era, spanning the last 65 million years. Geologists have divided the Cenozoic Era into two periods. These are the Tertiary (1.8-65 million years ago) and Quaternary Periods (recent to 1.8 million years ago). Most geologic records in Iowa are from the Quaternary period, and include glacial till and loess.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bypass traffic and experience a “scenic” change of pace by traveling along Iowa’s scenic byways. Iowa’s eight state-designated and two nationally-designated scenic byways are a great way to experience Iowa’s natural beauty, history and culture. Stop to smell the wildflowers or listen to the songbirds, or follow an impulse to take a side trip to one of the many attractions and countryside hamlets. A camera is a must for these postcard-perfect vistas. You never know when you will encounter a bald eagle along the Mississippi River, rare plants and animals in the Loess Hills, or the exceptional architecture of unique barns, churches and other buildings along the routes. This brochure identifies each scenic byway route and the approximate mileage in terms of hard-surfaced and gravel roadways. Estimated driving time ranges from one and one-half hour to three and one-half hours, depending on your speed and the number of stops. These routes are offered for those of you who want to relax and stop often to enjoy the sights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Producers continually strive for high yielding soybeans. The state-wide average yield for Iowa is now more than 50 bu./acre. The “yield plateau” reported by many producers does not exist, and is a perception largely brought on by misuse of an oversimplified management system. High yielding soybeans are achieved through improved and targeted management decisions. Improved agronomic decisions for soybeans are critical since soybean is very sensitive to stresses that influence soybean growth, development and yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Browse through this guide and you’ll find the distinct flavor of what is available along each byway. Discover recreational, historic, cultural and scenic attractions using the maps and lists provided in the guide. You’ll find numbered attractions for each byway in or near the town listed. For a comprehensive list of byway features, visit www.iowabyways.org. Friendly local contacts are provided to help you along the way. Iowa Transportation Maps clearly tracking all the Iowa byways with red dotted lines are available at Iowa’s official welcome centers. Traveling Iowa’s byways you will experience small town America, while enjoying diverse landscapes and unique landforms that have been shaped over thousands of years. Iowa’s cultural heritage also plays a major role across all 11 byways, boasting hundreds of historic sites, national landmarks and interpretive centers, each telling Iowa’s stories from the first Native Americans through European immigrants to modern times. Glaciers once covered much of Iowa, shaping the broad flat plains of the prairie. These massive sheets of ice missed the northeast corner of the state, leaving the land along the Driftless Area Byway rugged and hilly with rock outcroppings, springs and cold water trout streams. Rivers coursed their way through the land, carving deep furrows in some places and leaving gently rolling hills in others. In western Iowa, wind has shaped fine sand into the impressive Loess Hills, a rare land form found in only one other place on earth. Iowa’s two national scenic byways and nine state byways offer unique varieties of scenic features, and more for you to see and do. View three states from atop a Mississippi River bluff, stop at a modern art museum and then tour a working farm. Explore a historic mill, visit a national aquarium, take a boat ride in a cave, purchase locally crafted pottery and wares from local artisans or trace the footsteps of Lewis and Clark. Experience the actual wagon ruts of the Mormon Trail, ride your bike 13 stories high, canoe a water trail, star gaze under Iowa’s darkest sky, and marvel at mounds built by prehistoric cultures. Agriculture wraps Iowa’s byways with an abundance of farmland vistas and fills Iowa lands with ever-changing crops and activities for you to “harvest.” You’ll see croplands on the vast flat plains and farmsteads sprinkled across rolling hills reminiscent of a Grant Wood painting. Along the way, you might wander in a corn maze, rest at a bed and breakfast, study farming in museums, discover the Iowa barn quilt collection or visit a working Amish farm. When you are ready to step outside your vehicle, you’ll find much more to do and see. Prairie, forests, rivers and public lands are abundant along Iowa’s byways; providing opportunities for you to stop and play in the outdoors with hiking, biking, kayaking and trout fishing. Classic hometowns with pride for their unique lore and offerings are found all along the byways. They invite you to taste local food, enjoy their architecture, and immerse yourself in the rich history and culture that defines them. Why not plan your next journey off the beaten path? No matter how you choose to make the most of every moment, we know that time spent along Iowa’s byways is sure to grow your love for Iowa’s diverse, beautiful vistas and authentic communities. Happy driving!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream degradation is the action of deepening the stream bed and widening the banks due to the increasing velocity of water flow. Degradation is pervasive in channeled streams found within the deep to moderately deep loess regions of the central United States. Of all the streams, however, the most severe and widespread entrenchment occurs in western Iowa streams that are tributaries to the Missouri River. In September 1995 the Iowa Department of Transportation awarded a grant to Golden Hills Resource Conservation and Development, Inc. The purpose of the grant, HR-385 "Stream Stabilization in Western Iowa: Structure Evaluation and Design Manual", was to provide an assessment of the effectiveness and costs of various stabilization structures in controlling erosion on channeled streams. A review of literature, a survey of professionals, field observations and an analysis of the data recorded on fifty-two selected structures led to the conclusions presented in the project's publication, Design Manual, Streambed Degradation and Streambank Widening in Western Iowa. Technical standards and specifications for the design and construction of stream channel stabilization structures are included in the manual. Additional information on non-structural measures, monitoring and evaluation of structures, various permit requirements and further resources are also included. Findings of the research project and use and applications of the Design Manual were presented at two workshops in the Loess Hills region. Participants in these workshops included county engineers, private contractors, state and federal agency personnel, elected officials and others. The Design Manual continues to be available through Golden Hills Resource Conservation and Development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this report is to provide Iowa county engineers and highway maintenance personnel with procedures that will allow them to efficiently and effectively interpret and repair or avoid landslides. The research provides an overview of basic slope stability analyses that can be used to diagnose the cause and effect associated with a slope failure. Field evidence for identifying active or potential slope stability problems is outlined. A survey of county engineers provided data for presenting a slope stability risk map for the state of Iowa. Areas of high risk are along the western border and southeastern portion of the state. These regions contain deep to moderately deep loess. The central portion of the state is a low risk area where the surficial soils are glacial till or thin loess over till. In this region, the landslides appear to occur predominately in backslopes along deeply incised major rivers, such as the Des Moines River, or in foreslopes. The south-central portion of the state is an area of medium risk where failures are associated with steep backslopes and improperly compacted foreslopes. Soil shear strength data compiled from the Iowa DOT and consulting engineers files are correlated with geologic parent materials and mean values of shear strength parameters and unit weights were computed for glacial till, friable loess, plastic loess and local alluvium. Statistical tests demonstrate that friction angles and unit weights differ significantly but in some cases effective stress cohesion intercept and undrained shear strength data do not. Moreover, effective stress cohesion intercept and undrained shear strength data show a high degree of variability. The shear strength and unit weight data are used in slope stability analyses for both drained and undrained conditions to generate curves that can be used for a preliminary evaluation of the relative stability of slopes within the four materials. Reconnaissance trips to over fifty active and repaired landslides in Iowa suggest that, in general, landslides in Iowa are relatively shallow [i.e., failure surfaces less than 6 ft (2 m) deep] and are either translational or shallow rational. Two foreslope and two backslope failure case histories provide additional insights into slope stability problems and repair in Iowa. These include the observation that embankment soils compacted to less than 95% relative density show a marked strength decrease from soils at or above that density. Foreslopes constructed of soils derived from shale exhibit loss of strength as a result of weathering. In some situations, multiple causes of instability can be discerned from back analyses with the slope stability program XSTABL. In areas where the stratigraphy consists of loess over till or till over bedrock, the geologic contracts act as surfaces of groundwater accumulation that contribute to slope instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.