7 resultados para LESS REGULAR CONDUCTIVITIES
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The session laws for General Assembly 79.
Resumo:
Iowa Code § 8D.10 requires certain state agencies prepare an annual report to the General Assembly certifying the identified savings associated with that state agency’s use of the Iowa Communications Network (ICN). This report covers estimated cost savings related to video conferencing via ICN for the Iowa Department of Transportation (DOT). In FY 2008, the DOT did not conduct any sessions utilizing ICN’s video conferencing system. Therefore, no cost savings were calculated for this report.
Resumo:
Introduction and summary Iowa Code § 8D.10 requires certain state agencies to prepare an annual report to the General Assembly certifying the identified savings associated with that state agency’s use of the Iowa Communications Network (ICN). This report covers estimated cost savings related to video conferencing via ICN for the Iowa Department of Transportation (DOT). In FY 2010, the DOT did not conduct any sessions utilizing ICN’s video conferencing system. Therefore, no cost savings were calculated for this report.
Resumo:
This technical brief summarizes information about the costs and benefits that have been attributed to use of hybrid transit buses as found in the literature. Results from a demonstration project that compared fuel economy and emissions for 12 hybrid buses and 7 control buses for the transit agency for Ames, Iowa and Iowa State University, CyRide, were also included.
Resumo:
The objective of this project was to evaluate the in-use fuel economy and emission differences between hybrid-electric and conventional transit buses for the Ames, Iowa transit authority, CyRide. These CyRide buses were deployed in the fall of 2010. Fuel economy was compared for the hybrid and control buses. Several older bus types were also available and were included in the analysis. Hybrid buses had the highest fuel economy for all time periods for all bus types. Hybrid buses had a fuel economy that was 11.8 percent higher than control buses overall, 12.2 percent higher than buses with model years 2007 and newer, 23.4 percent higher than model years 2004 through 2006, 10.2 percent higher than model years 1998 through 2003, 38.1 percent higher than model years 1994 through 1997, 36.8 percent higher than model years 1991 through 1993, and 36.8 percent higher for model years pre-1991. On-road emissions were also compared for three of the hybrid buses and two control buses using a portable emissions monitor. On-average, carbon dioxide, carbon monoxide, and hybrid carbon emissions were much higher for the control buses than for the hybrid buses. However, on average nitrogen oxide emissions were higher for the hybrid buses.
Resumo:
The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.