9 resultados para KEEP CLEAR Pavement Markings
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
One significant benefit of asphalt concrete pavement construction is that it may be opened to traffic within one hour after being laid. Therefore, road closure and detour are not necessary, but only temporary lane closure and control of traffic. This one lane construction, even though desirable in regard to maintaining traffic flow, does pose an additional problem. The longitudinal joint at centerline often becomes a maintenance problem. The objective of this research project is to identify construction procedures that will provide an improved centerline joint.
Resumo:
The benefits of pavement management system when fully implemented are well known and the history of successful implementation is rich. Implementation occurs, for purposes of this paper, when the pavement management system is the critical component for making pavement decisions. This paper addresses the issues that act as barriers to full implementation of pavement management systems. Institutional barriers, not technical and financial barriers, are more commonly responsible for a pavement management systems falling short of full implementation. The paper groups these institutional issues into a general taxonomy. In general, more effort needs to be put forth by highway agencies to overcome institutional issues. Most agencies approach pavement management as a technical process, but more commonly, institutional issues become more problematic and thus require more attention paid to institutional issues. The paper concludes by summarizing the implementation process being taken by the Iowa Department of Transportation. The process was designed to overcome institutional barriers and facilitate the complete and full implementation of their pavement management system.
Resumo:
This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted.
Resumo:
This document briefly summarizes the pavement management activities under the existing Iowa Department of Transportation (DOT) Pavement Management System. The second part of the document provides projected increase in use due to the implementation of the Iowa DOT Pavement Management Optimization System. All estimates of existing time devoted to the Pavement Management System and project increases in time requirements are estimates made by the appropriate Iowa DOT office director or function manager. Included is the new Pavement Management Optimization Structure for the three main offices which will work most closely with the Pavement Management Optimization System (Materials, Design, and Program Management).
Resumo:
The missions of the research are to assist the Iowa Department of Transortation (Iowa DOT) to: Define pavement management (PM) optimization; Identify the characteristics of PM optimization systems being developed or implemented; Identify specific and achievable objectives for the Iowa DOT pavement management optimization; Evaluate different PM optimization methodologies; Identify a methodology to perform PM optimization that best satisfies the Iowa DOT's objectives; Develop a plan for the implementation of the PM optimization selected. The project is divided into three (3) phases. The first phase has been completed and accomplished the first three missions (identified above). The second phase has been completed and accomplished the next two missions. Phase three will accomplish the last mission.
Resumo:
This report is submitted pursuant to a contract dated August 30, 1967, between the Iowa State Highway Commission and Howard, Needles, Tammen & Bergendoff, Consulting Engineers, in connection with studies determining (11,A) alternate pavement designs, and (11,B) criteria for geometric design studies. Included herein is that portion of the report covering Paragraph 11,A, comprising preparation of alternate type pavement designs (Portland Cement and Asphaltic Concrete) for the Cedar Valley Freeway and proposed US-518 from 1-80 to US-30. These alternate pavement designs consider quality and availability of aggregates, soil conditions and traffic information, to determine details and dimensions of pavement design. Comparative cost studies were prepared from alternate design data and recommendations as to pavement type are presented for Commission review.
Resumo:
The overall objective of the work contained in this paper is to identify background information on the use of load-transfer devices in highway pavement joints and to provide a preliminary assessment of the market potential for use of alternative materials in that capacity. The intent of the authors is to provide a concise compilation of information upon which HITEC personnel may judge whether or not the use of alternative materials for concrete highway pavement joints is worth a more thorough and rigorous evaluation.
Resumo:
The objective of the research project was to seek acceptable solutions to the air pollution problem created in the asphalt recycling process using modified conventional equipment.
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.