26 resultados para Irrigation and drainage
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Other Audit Reports
Resumo:
Audit report on the Disaster Grants – Public Assistance program of the Green Bay Levee and Drainage District in Lee County, Iowa for the year ended June 30, 2009
Resumo:
In the preparation of this compilation of drainage laws of Iowa, an attempt has been made to include those sections of the Code to which reference is frequently required by the State Highway Commission, Boards of Supervisors and County Engineers in the conduct of highway and road administration as it is affected by the Iowa drainage laws. Of necessity some Code provisions which have a bearing on the principal subject were omitted. Enactments of the 56th General Assembly which modify existing code sections have been included as part of the regular text of the Code sections included in this publication. THE USER IS CAUTIONED THAT THESE CODE SECTIONS, AS MODIFIED BY THE 56th GENERAL ASSEMBLY, ARE NOT A PART OF THE 1954 CODE OF IOWA AND ARE OFFICIAL ONLY INSOFAR AS THEY ARE PRINTED IN THE OFFICIAL PUBLICATION ACTS OF THE 56TH GENERAL ASSEMBLY. SINCE THE 57TH GENERAL ASSEMBLY IS IN SESSION DURING THE PRINTING OF THIS PUBLICATION, ENACTMENTS OF THAT BODY WHICH AMEND OR REPEAL SECTIONS SET OUT HEREIN ARE INCLUDED IN THE BACK OF THIS VOLUME ON THE PINK-COLORED PAPER. THE USER IS CAUTIONED IN USING THIS VOLUME TO REFER TO THE TABLE OF SECTIONS REPEALED OR AMENDED, ON THE PINK-COLORED PAPER AT THE BACK OF THIS VOLUME. This publication is offered with the hope and belief that it will prove to be of value and assistance to those concerned with the problems of administering a highway, road and drainage system.
Resumo:
The relationship between Iowa’s roads and drainage developed when rural roads were originally constructed. The land parallel to roadways was excavated to create road embankments. The resulting ditches provided an outlet for shallow tiles to drain nearby fields for farming. Iowa’s climate and terrain are nearly ideal for farming, and more than 90 percent of the land suits the purpose. Much of the land, however, needs to be artificially drained to achieve maximum productivity. Most of this drainage has been accomplished with an extensive network of levees, open ditches, and underground tiles. The U.S. Census Bureau estimated that as early as 1920 approximately nine million acres of Iowa farm land had been artificially drained or needed to be. Couple this drainage system with Iowa’s extensive surface transportation system—approximately 100,000 miles of roads and streets, 90,000 on local systems— and potential for conflicts will naturally arise. This is particularly true with urban expansion resulting in residential and commercial development of rural land. This manual contains summaries of and references to the laws most relevant to drainage in Iowa. It also includes frequently asked questions about transportation agencies’ responsibilities related to drainage. Typical policies and agreement forms used by agencies to address drainage issues are illustrated and a glossary of common terms is included.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.
Resumo:
This manual describes best roadway maintenance practices for Iowa's local roads and streets, from the center line to shoulders, ditches, and drainage, with chapters on public relations, bridge maintenance, and snow and ice control. Each chapter contains safety tips, information(as appropriate) on managing quality control, and a list of references for further information.
Resumo:
The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways while maintaining two-way traffic. An 18.82 mile project was selected for 2011 construction in northeast Iowa on US 18 between Fredericksburg and West Union. This report documents planning, design, and construction of the project and lessons learned. The work included the addition of subdrains, full-depth patching, bridge approach replacement, and drainage structural repair and cleaning prior to overlay construction. The paving involved surface preparation by milling to grade and the placement of a 4.5 inch PCC overlay and 4 foot of widening to the existing pavement. In addition, the report makes recommendations on ways to improve the process for future concrete overlays.
Resumo:
Iowa counties have tried to rehabilitate deteriorating portland cement concrete (PCC) pavements with standard overlays, placement of engineering fabric, rock, open graded bituminous mixes and cracking and seating. While these methods prolong the life of the road, the cracks in the old pavement have eventually reflected to the surface. One possible alternative for rehabilitating severely deteriorated roads and preventing reflective cracking is the rubblization process. The objective of this research project was to rehabilitate and evaluate a severely deteriorated PCC roadway using a rubblization process. A 3.0 km (1.9 mi) section of L63 in Mills County was selected for this research. The road was divided into 16 sections. A resonate frequency vibration pavement breaker was used to rubblize the existing pavement. The variables of rubblization, drainage, and ACC overlay depths of 75 mm (3 in.), 100 mm (4 in.), and 125 mm (5 in.) were evaluated. The research on rubblized concrete pavement bases support the following conclusions: (1) The rubblization process prevents reflective cracking; (2) Edge drains improved the structural rating of the rubblized roadway; (3) An ACC overlay of 125 mm (5 in.) on a rubblized base provided an excellent roadway regardless of soil and drainage conditions; (4) An ACC overlay of 75 mm (3 in.) on a rubblized base can provide a good roadway if the soil structure below the rubblized base is stable and well drained; and (5) The Road Rater structural ratings of the rubblized test sections for this project are comparable to the nonrubblized test sections.
Resumo:
East Okoboji Beach was platted on April 20, 1961 and includes over 90.4 acres with 489 lots. The East Okoboji Beach project includes a complete storm water discharge system, which includes low impact development and reconstruction of the roadways in East Okoboji Beach. The East Okoboji Beach Project is an enormous project that is the first Dickinson County project to retrofit LID practices, lake-friendly storm-water drainage systems and roadway reconstruction throughout an existing sub- division. This cooperative project between DNR, Dickinson County, and EOB landowners includes engineering retention ponds, rain gardens, bio-swales and other LID practices to reduce nutrient and sediment pollutants flowing directly into East Okoboji. The nature of the problem stems back to that original plat where small lots were platted and developed without planning for storm water discharge. There was no consideration of the effects of filling in and developing over the many wetland areas existing in EOB. The scope of the problem covers the entire 90.4 acres in East Okoboji Beach, the DNR owned land and the farmed land to the east. The nature of the problem stems from storm water runoff flowing throughout the watershed and into East Okoboji Beach where it flows down self-made paths and then into East Lake Okoboji. That storm water runoff dumps nutrient and sediment pollutions directly into East Lake Okoboji. The expected result of this project is a new roadway and drainage system constructed with engineering that is intended to protect East Lake Okoboji and the land and homes in East Okoboji Beach. The benefit will be the improvement in the waters and the reduction of the siltation in the East Lake Okoboji.
Resumo:
The Summit Lake Watershed Improvement Project is a watershed-based sediment control project designed to greatly reduce to nearly eliminate sedimentation of an existing lake that is being renovated for use as a water source in southern Iowa. Summit Lake is owned by the City of Creston and was once a water source lake until around 1984. The watershed improvements will include lakeshore stabilization and erosion control practices as a precursor for related improvements to the lake and overall 4,900-acre watershed. Best practices included in this phase are the implementation of riprap, a rain garden, grade stabilization structures, grassed waterways, terraces, basins, water use and access ordinances, education and outreach, water monitoring, and other stream bank improvements. These improvements, along with leveraged work to be done by strategic partners, will enable the lake to be used for local and regional water supplies by sustaining the lake for many years to come. Without the lake rehabilitation, the lake will likely be filled with sedimentation to the point that it will have no recreational value. Key partners are the City of Creston, IDNR, Southern Iowa Rural Water Association, Union County, the Union County NRCS office, Southwestern Community College, and the Summit Lake Association, which is a non-profit group of landowners working to protect the lake. The project will address WIRB targets: a) streambank stabilization, b) livestock runoff, c) agricultural runoff and drainage, d) stormwater runoff, and e) a section of inadequately sewered community.
Resumo:
Audit report on the Disaster Grants – Public Assistance program of Louisa – Des Moines County Drainage District in Des Moines County and Louisa County, Iowa for the year ended June 30, 2009
Resumo:
Audit report on the Disaster Grants – Public Assistance program of Louisa – Des Moines County Drainage District #4 in Des Moines County and Louisa County, Iowa for the year ended June 30, 2010
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship