4 resultados para Information Model
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement projects encountering 13,000- to 150-year-old Native American sites. This project identifies critical variables for assessing prehistoric sites potential, examines the quality of available data about the variables, and applies the data to creating a decision support framework for use by the Iowa Department of Transportation (Iowa DOT) and others. An analysis of previous archaeological surveys indicates that subsurface testing to discover buried sites became increasingly common after 1980, but did not become routine until after the adoption of guidelines recommending such testing, in 1993. Even then, the average depth of testing has been relatively shallow. Alluvial deposits of sufficient age, deposited in depositional environments conducive to human habitation, are considerably thicker than archaeologists have routinely tested.
Resumo:
This report highlights the Fiscal Year 2014 accomplishments of IOWAccess, including IOWAccess projects in development. Certain services offered through IOWAccess charge a value-added fee. Contained within this report are a description of the IOWAccess business model and the processes employed by IOWAccess to fund and monitor projects, along with a listing of projects funded during the reporting period.
Resumo:
To support the analysis of driver behavior at rural freeway work zone lane closure merge points, Center for Transportation Research and Education staff collected traffic data at merge areas using video image processing technology. The collection of data and the calculation of the capacity of lane closures are reported in a companion report, "Traffic Management Strategies for Merge Areas in Rural Interstate Work Zones". These data are used in the work reported in this document and are used to calibrate a microscopic simulation model of a typical, Iowa rural freeway lane closure. The model developed is a high fidelity computer simulation with an animation interface. It simulates traffic operations at a work zone lane closure. This model enables traffic engineers to visually demonstrate the forecasted delay that is likely to result when freeway reconstruction makes it necessary to close freeway lanes. Further, the model is also sensitive to variations in driver behavior and is used to test the impact of slow moving vehicles and other driver behaviors. This report consists of two parts. The first part describes the development of the work zone simulation model. The simulation analysis is calibrated and verified through data collected at a work zone in Interstate Highway 80 in Scott County, Iowa. The second part is a user's manual for the simulation model, which is provided to assist users with its set up and operation. No prior computer programming skills are required to use the simulation model.
Resumo:
The purpose of this project is to develop an investment analysis model that integrates the capabilities of four types of analysis for use in evaluating interurban transportation system improvements. The project will also explore the use of new data warehousing and mining techniques to design the types of databases required for supporting such a comprehensive transportation model. The project consists of four phases. The first phase, which is documented in this report, involves development of the conceptual foundation for the model. Prior research is reviewed in Chapter 1, which is composed of three major sections providing demand modeling background information for passenger transportation, transportation of freight (manufactured products and supplies), and transportation of natural resources and agricultural commodities. Material from the literature on geographic information systems makes up Chapter 2. Database models for the national and regional economies and for the transportation and logistics network are conceptualized in Chapter 3. Demand forecasting of transportation service requirements is introduced in Chapter 4, with separate sections for passenger transportation, freight transportation, and transportation of natural resources and commodities. Characteristics and capacities of the different modes, modal choices, and route assignments are discussed in Chapter 5. Chapter 6 concludes with a general discussion of the economic impacts and feedback of multimodal transportation activities and facilities.