3 resultados para In-plane bending

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the Iowa Department of Transportation (Iowa DOT) continuous, steel, welded plate girder bridges have developed web cracking in the negative moment regions at the diaphragm connection plates. The cracks are due to out-of-plane bending of the web near the top flange of the girder. The out-of-plane bending occurs in the "web-gap", which is the portion of the girder web between (1) the top of the fillet welds attaching the diaphragm connection plate to the web and (2) the fillet welds attaching the flange to the web. A literature search indicated that four retrofit techniques have been suggested by other researchers to prevent or control this type of cracking. To eliminate the problem in new bridges, AASHTO specifications require a positive attachment between the connection plate and the top (tension) flange. Applying this requirement to existing bridges is expensive and difficult. The Iowa DOT has relied primarily on the hole-drilling technique to prevent crack extension once cracking has occurred; however, the literature indicates that hole-drilling alone may not be entirely effective in preventing crack extension. The objective of this research was to investigate experimentally a method proposed by the Iowa DOT to prevent cracking at the diaphragm/plate girder connection in steel bridges with X-type or K-type diaphragms. The method consists of loosening the bolts at some connections between the diaphragm diagonals and the connection plates. The investigation included selecting and testing five bridges: three with X-type diaphragms and two with K-type diaphragms. During 1996 and 1997, these bridges were instrumented using strain gages and displacement transducers to obtain the response at various locations before and after implementing the method. Bridges were subjected to loaded test trucks traveling in different lanes with speeds varying from crawl speed to 65 mph (104 km/h) to determine the effectiveness of the proposed method. The results of the study show that the effect of out-of-plane loading was confined to widths of approximately 4 in. (100 mm) on either side of the connection plates. Further, they demonstrate that the stresses in gaps with drilled holes were higher than those in gaps without cracks, implying that the drilling hole technique is not sufficient to prevent crack extension. The behavior of the web gaps in X-type diaphragm bridges was greatly enhanced by the proposed method as the stress range and out-of-plane distortion were reduced by at least 42% at the exterior girders. For bridges with K-type diaphragms, a similar trend was obtained. However, the stress range increased in one of the web gaps after implementing the proposed method. Other design aspects (wind, stability of compression flange, and lateral distribution of loads) must be considered when deciding whether to adopt the proposed method. Considering the results of this investigation, the proposed method can be implemented for X-type diaphragm bridges. Further research is recommended for K-type diaphragm bridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.