2 resultados para Immersion calorimetry
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.