8 resultados para Hot-humid climate
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
On April 27, 2007, Iowa Governor Chet Culver signed Senate File 485, a bill related to greenhouse gas emissions. Part of this bill created the Iowa Climate Change Advisory Council (ICCAC), which consists of 23 governor-appointed members from various stakeholder groups, and 4 nonvoting, ex officio members from the General Assembly. ICCAC’s immediate responsibilities included submitting a proposal to the Governor and General Assembly that addresses policies, cost-effective strategies, and multiple scenarios designed to reduce statewide greenhouse gas emissions. Further, a preliminary report was submitted in January 2008, with a final proposal submitted in December 2008. In the Final Report, the Council presents two scenarios designed to reduce statewide greenhouse gas emissions by 50% and 90% from a 2005 baseline by the year 2050. For the 50% reduction by 2050, the Council recommends approximately a 1% reduction by 2012 and an 11% reduction by 2020. For the 90% reduction scenario, the Council recommends a 3% reduction by 2012 and a 22% reduction 2020. These interim targets were based on a simple extrapolation assuming a linear rate of reduction between now and 2050. In providing these scenarios for your consideration, ICCAC approved 56 policy options from a large number of possibilities. There are more than enough options to reach the interim and final emission targets in both the 50% and 90% reduction scenarios. Direct costs and cost savings of these policy options were also evaluated with the help of The Center for Climate Strategies, who facilitated the process and provided technical assistance throughout the entire process, and who developed the Iowa Greenhouse Gas Emissions Inventory and Forecast in close consultation with the Iowa Department of Natural Resources (IDNR) and many Council and Sub-Committee members. About half of the policy options presented in this report will not only reduce GHG emissions but are highly cost-effective and will save Iowans money. Still other options may require significant investment but will create jobs, stimulate energy independence, and advance future regional or federal GHG programs.
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
Over the years, the Iowa Department of Transportation has established an outstanding network of connector highways across the state of Iowa. Construction and paving of these primary roadways has essentially been completed. Unfortunately, many of these primary highway pavements are reaching their design life and are in need of rehabilitation. The emphasis, therefore, has shifted from the construction of new highways to the maintenance and rehabilitation of existing highways. The Iowa DOT in recent years has become more concerned with preventing the ingress of surface water into the pavement structure. Crack sealing is receiving greater emphasis. Specifications have been modified to require improved low modulus crack and joint sealing materials.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
The Iowa D.O.T. specifications do not require 100 percent of 50 blow Marshall density (generally 94%) for field compaction. However, stabilities are determined in the Laboratory on specimens compacted to 100 percent of Marshall density. The purpose of this study is to determine the stabilities of specimens compacted to various densities which are below 100 percent of the 50 blow Marshall density.
Resumo:
Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.