8 resultados para Higher Abel-Jacobi maps
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Iowa’s land was mapped long before it was declared a state. Since Lewis and Clark published their journey across the North American west in 1814, many different uses for maps have been found. Today there are maps of Iowa’s roads, waterways, landscape features, geology, and land use. One of the more recent mapping efforts has involved using a technology called LiDAR. This technology creates a topographic map of Iowa’s elevation that is accurate to within eight inches, ten times higher resolution than in previous elevation maps.
Resumo:
The performance audit conducted by the Department of Management concerned the licensed substance abuse treatment programs in Department of Corrections’ institutions. This report uses the same methodology, modified for community-based corrections populations, to examine the delivery of substance abuse treatment for higher risk offenders under field supervision, and all offenders who were assigned to community corrections residential facilities.
Resumo:
A newly released study shows that the prevalence of mental health and substance abuse disorders among Iowa’s inmate population is even higher than earlier findings indicated. Using the MINI-Plus assessment tool, University of Iowa researchers screened a randomly selected group of 320 incoming nonviolent offenders at IMCC from 2005 to 2007. DOC’s Director of Mental Health Services, Dr. Bruce Sieleni, participated in the study.
Resumo:
Like many businesses and government agencies, the Iowa Department of Corrections has been measuring our results for some years now. Certain performance measures are collected and reported to the Governor as part of the Director’s Flexible Performance Agreement used to evaluate the DOC Director. Updates of these measures are forwarded to DOC staff on a quarterly basis. In addition, the Iowa Department of Management requires each state agency to report on certain performance measures as part of Iowa’s effort to ensure accountability in state government. These measures and their progress are posted to www.ResultsIowa.org
Resumo:
The Condition of Higher Education in Iowa report prepared by Iowa College Student Aid Commission.
Resumo:
The primary objectives of the Electronic Bulletin Board System (BBS) project were to: (1) Provide an electronic communication tool which would link city and county engineering offices to each other and to other governmental agencies for messaging and data sharing; (2) Provide a dial-up site for reference information or files accessible on-demand; and (3) Provide a "stepping stone" to the world of electronic data transfer, recognizing that most local government employees face a huge complex of technology with limited knowledge of computers and communications tools. The system was designed to be as simple as possible, and to require minimal equipment and software cost to the users. The original system was an Apex 386/25 computer with MS-DOS 5.0 software and the final configuration was an HP Vectra XM Pentium 90 with MS-NT 3.51 and Mustang - Wildcat 5.0 software. The users of the BBS were county engineers and their staff, offices in the central office of the Iowa Department of Transportation (DOT) and Resident Construction Engineers at the Iowa DOT. Much of the activity was between the county engineers, and their staffs, and the Iowa DOT offices with which they have ongoing business activities. The BBS contained files for mapping, Internet e-mail service, Accident Location Analysis System (ALAS) data, Iowa DOT bid lettings, and Autocad and Intergraph maps and standards. The 800 line calls were recorded and gave the best indication of the usage and the trends that were being followed. The usage tended to be higher in the winter months when design activities are occurring and lower in the summer months when the construction is in progress. The project was judged a success. The BBS did provide a "stepping stone" to the world of electronic data transfer.
Resumo:
This document represents a substantial attempt to survey the literature of labor negotiations as it relates to the faculty in higher education.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.