6 resultados para High Lift Systems Design
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Design and Evaluation of a Single-Span Bridge Using Ultra- High Performance Concrete, September 2009
Resumo:
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.
Resumo:
For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.
Resumo:
Introduction: As part of the roadside development along the Interstate Highway System, the Iowa State Highway Commission has constructed eight pair of rest area facilities. Furthermore, two pair are presently under construction with an additional two pair proposed for letting in 1967. An additional nine and one-half pairs of rest areas are in the planning phase, a grand total of 45 rest Brea buildings. The facilities existing were planned and designed in a relatively short period of time. The rest area facilities are unusual in terms of water use, water demand rates, and the fact that there are no applicable guidelines from previous installations. Such facilities are a pioneering effort to furnish a service -which the travelling public desires and will use. The acceptance and current use of the existing facilities shows that the rest areas do provide a service the public will use and appreciate. The Iowa State Highway Commission is to be congratulated for this· pioneering effort. However there are problems, as should be expected when design of a new type of facility has no past operating experience to use as a guide. Another factor which enters is that a rest area facility is quite different and rather unrelated to engineering in the highway field of practice. Basically, the problems encountered can be resolved into several areas, namely 1) maintenance problems in equipment due to 2) insufficient capacity of several other elements of the water systems, and 3) no provisions for water quality control. This study and report is supposed to essentially cover the review of the rest areas, either existing and under construction or letting. However, the approach used has been somewhat different. Several basic economically feasible water system schemes have been developed which are· adaptable to the different well capacities and different water qualities encountered. These basic designs are used as a guide in recommending modifications to the existing rest area water systems, anticipating that the basic designs will be used for future facilities. The magnitude of the problems involved is shown by the fact that the projected water use and demand variations of each rest area building is equivalent to the water supply for a community of about 100 people. The problems of proper operation and maintenance of an eventual thirty to forty-five such facilities are gigantic. For successful operation the rest area water systems must have a high degree of standardization and interchangeability of all elements of the water systems, even if it means a limited degree of over-design in some rest area facilities.