8 resultados para Hierarchical Intervention
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
Report on the Iowa Early Intervention Block Grant Program administered by the Department of Education for the period July 1, 2005 through June 30, 2010
Resumo:
A simple checklist divided into sections by month showing the common progression of hearing ability of a child up to three years of age .
Resumo:
This guide is intended to serve as the fi rst step in your journey toward understanding your child’s hearing loss and the resources available for your child and your family. Research provides clear evidence that if a child with hearing loss is to succeed in both language and educational development, the involvement of parents is crucial. This guide will equip you with the basic knowledge and resources you need to navigate Iowa’s service system. Here you will find: • information about the professionals who will work with your child • information about family support • your child’s education and communication options • your rights and responsibilities as the parent of child who is deaf or hard of hearing • links to other important resources • a glossary of new words you may encounter
Resumo:
This guide is intended to serve as the fi rst step in your journey toward understanding your child’s hearing loss and the resources available for your child and your family. Research provides clear evidence that if a child with hearing loss is to succeed in both language and educational development, the involvement of parents is crucial. This guide will equip you with the basic knowledge and resources you need to navigate Iowa’s service system. Here you will find: • information about the professionals who will work with your child • information about family support • your child’s education and communication options • your rights and responsibilities as the parent of child who is deaf or hard of hearing • links to other important resources • a glossary of new words you may encounter Esta guía tiene por objeto ayudarle a dar el primer paso para comprender la pérdida auditiva de su hijo/a y los recursos disponibles para él/ella y su familia. Las investigaciones demuestran claramente que la participación de los padres es fundamental para que los niños con pérdida auditiva tengan éxito tanto en su desarrollo lingüístico como educacional. Esta guía le entregará los conocimientos y recursos básicos que necesitará para navegar por el sistema de servicios de Iowa. En esta guía encontrará: • información sobre los profesionales que trabajarán con su hijo/a • información sobre apoyo familiar • opciones de educación y comunicación de su hijo/a • sus derechos y responsabilidades como padre o madre de un niño con sordera o con difi cultades auditivas • vínculos a otros recursos importantes • un glosario de nuevas palabras que necesita conocer
Resumo:
We develop a real option model of the irreversible native grassland conversion decision. Upon plowing, native grassland can be followed by either a permanent cropping system or a system in which land is put under cropping (respectively, grazing) whenever crop prices are high (respectively, low). Switching costs are incurred upon alternating between cropping and grazing. The effects of risk intervention in the form of crop insurance subsidies are studied, as are the effects of cropping innovations that reduce switching costs. We calibrate the model by using cropping return data for South Central North Dakota from 1989 to 2012. Simulations show that a risk intervention that offsets 20% of a cropping return shortfall increases the sod-busting cost threshold, below which native sod will be busted, by 41% (or $43.7/acre). Omitting cropping return risk across time underestimates this sod-busting cost threshold by 23% (or $24.35/acre), and hence underestimates the native sod conversion caused by crop production.
Resumo:
This is a six page document of Qusetions and Answer for Early Hearing Detecting and Inventation.
Resumo:
This project examines the effects of age, experience, and video-based feedback on the rate and type of safety-relevant events captured on video event recorders in the vehicles of three groups of newly licensed young drivers: 1. 14.5- to 15.5-year-old drivers who hold a minor school license (see Appendix A for the provisions of the Iowa code governing minor school licenses); 2. 16-year-old drivers with an intermediate license who are driving unsupervised for the first time; 3. 16-year-old drivers with an intermediate license who previously drove unsupervised for at least four months with a school license. METHODS: The young drivers’ vehicles were equipped with an event-triggered video recording device for 24 weeks. Half of the participants received feedback regarding their driving, and the other half received no feedback at all and served as a control group. The number of safety-relevant events per 1,000 miles (i.e., “event rate”) was analyzed for 90 participants who completed the study. RESULTS: On average, the young drivers who received the video-based intervention had significantly lower event rates than those in the control group. This finding was true for all three groups. An effect of experience was seen for drivers in the control group; the 16-year-olds with driving experience had significantly lower event rates than the 16-year-olds without experience. When the intervention concluded, an increase in event rate was seen for the school license holders, but not for either group of 16-year-old drivers. There is strong evidence that giving young drivers video-based feedback, regardless of their age or level of driving experience, is effective in reducing the rate of safety-relevant events relative to a control group who do not receive feedback. Specific comparisons with regard to age and experience indicated that the age of the driver did not have an effect on the rate of safety-events, while experience did. Young drivers with six months or more of additional experience behind the wheel had nearly half as many safety-relevant events as those without that experience.