189 resultados para Groundwater hydraulics
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
The 2007 Iowa General Assembly, recognizing the increased demand for water to support the growth of industries and municipalities, approved funding for the first year of a multi-year evaluation and modeling of Iowa’s major aquifers by the Iowa Department of Natural Resources. The task of conducting this evaluation and modeling was assigned to the Iowa Geological and Water Survey (IGWS). The first aquifer to be studied was the Lower Dakota aquifer in a sixteen county area of northwest Iowa.
Resumo:
This report updates the Iowa Department of Transportation (DOT) design procedures for circular, slope-tapered concrete culverts. The current practice is to use the design coefficients for a square-edged, circular concrete culvert with a headwall that are found in Hydraulic Series No. 5 (HDS-5). New inlet control design constants and entrance loss coefficients were calculated for the slope-tapered culverts and then compared with the HDS-5 coefficients (square edge). In addition, various reducer lengths and taper ratios were also studied to determine what impact, if any, they have on the design coefficients. All of the laboratory testing was done at the Federal Highway Administration�s Turner-Fairbank Highway Research Center located in McLean, Virginia.
Resumo:
The Iowa Department of Natural Resources (IDNR) has requested that the Iowa Department of Public Health (IDPH) complete an update of the health consultation for the Hills, Iowa Perchlorate Groundwater Contamination Site that was originally completed in June 2004. In this updated health consultation, the IDPH will: 1) summarize background information on this site, 2) summarize the progress of work that has been completed regarding the site, 3) summarize the environmental data that has been collected, 4) summarize toxicological information and regulatory information regarding perchlorate, and 5) provide an update to any conclusions and recommendations from the Iowa Department of Public Health. The Iowa Department of Public Health’s priority is to ensure the Hills community has the best information possible to safeguard its health and the IDNR has the best information to guide its activities. That information is included in the following paragraphs.
Resumo:
The Railroad Avenue groundwater contamination site (the site) is in West Des Moines, Polk County, Iowa. Located on approximately 120 acres. The site comprises mixed residential, industrial and commercial properties. Underneath the site, chlorinated volatile organic compounds (VOCs) have contaminatcd the shallow (i.e., 30-50 feet deep) groundwater. These compounds have compromised several shallow wells within the West Des Moines water works system. A contamination source, however, has not yet been identified. In 1993, routine water analysis by the City of West Des Moines identified 1, 2 cis-dichlorocthylcne (1, 2 cis-DCE) at a concentration of 1.2 μg/L (micrograms) per liter of water) in the water supply. Subsequently. several shallow municipal wells were found to be contaminated by VOCs, including 1. 2 cis-DCE, trichloroethylene (TCE), tetrachloroethylene (PCE) and benzene. Five of these wells have been taken out of service. Because of the impact on the West Des Moines water supply, the U.S. Environmental Protection Agency (USEPA) has assigned the site to the National Priorities List. Surface water und sediment at the site have not been impacted by the VOCs. Testing for VOCs in surface soils has not revealed any significant VOC contamination. Subsurface soils -- generally 8 feet or greater in depth -- are contaminated with VOCs, but at levels which should not present a health hazard. The past, present, and future health hazard category chosen for this site is no apparent public health hazard. This category is used when exposure to toxins might be occurring or might have occurrcd in the past, but at levels below any known health hazard. Analysis of available environmental data has not revealed that residental or commercial water customers are or have been exposed to VOCs at concentrations that might cause any adverse health effects.
Resumo:
The Iowa Department of Natural Resources (IDNR) asked the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to perform a health consultation for the Climbing Hill, Iowa, groundwater contamination site. IDNR wants to know if the site poses a public health hazard. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations. Climbing Hill is an unincorporated town in Woodbury County, Iowa, approximately 15 miles southeast of Sioux City. The town has approximately 120 residents. All of the residents and most businesses within the town use private wells to supply their drinking water. The local restaurant has an individual well that is classified as a public water supply system because it has the potential to serve more than 25 people in a day. Several wells in the town have become contaminated with gasoline and diesel fuel leaking from two underground storage tanks. All of the wells are roughly 75–80 feet deep (R. Cardinale, IDNR, Underground Storage Tank Section, personal communication, January 30, 2004).
Resumo:
The U. S. Environmental Protection Agency (EPA) Region 7, as well as concerned citizens, asked the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to perform a health consultation for the Hills, Iowa Perchlorate Groundwater Contamination Site. Specifically, IDPH was asked to determine if EPA’s action of providing bottled water to residents whose private wells had concentrations of greater than 18 μg/L (micrograms per liter) or 18 parts per billion (ppb) perchlorate is protective of public health, and to address some community health concerns. The information included in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
The following pages take the form of a refresher (or even beginning) course in culvert hydraulics, the experimental data being used to illustrate and substantiate the discussion rather than forming the principal exhibit as in the customary report. Even before speaking of culverts themselves, the writers have hence inserted basic material on the various flow phenomena involved in culvert operation, so that the subsequent treatment will not presume more than the reader already has in mind.
Resumo:
This report summarizes the results of groundwater monitoring that took place from October 2014 - April 2015. Raw, untreated groundwater was sampled from forty-five municipal wells generall characterized as vulnerable to contamination from surface activities. Samples were analyzed for basic water quality parameters, nutrients, atrazine and two of its breakdown products, chloroacetanilide herbicides and their ethanesulfonic and oxanalic acid degradates, and a suite of sixteen pharmaceutical compounds.
Resumo:
This report summarizes the results of groundwater quality monitoring conducted at 68 public water supply wells in Iowa between October 2015 and March 2016. Raw groundwater samples were analyzed for basic water quality parameters, nutrients, atrazine and its degradates, and chloroacetanilide herbicides and their ethanesulfonic and oxanilic acid degradates. In addition, a subset of samples were analyzed for radionuclides including gross alpha and gross beta radioactivity, radium-226, and radium-228.
Resumo:
Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.
Resumo:
Iowa Department of Natural Resources fact sheet on water.
Resumo:
What we do: Since 1892, the Iowa Geological and Water Survey (IGWS) has provided earth, water, and mapping science to all Iowans. We collect and interpret information on subsurface geologic conditions, groundwater and surface water quantity and quality, and the natural and built features of our landscape. This information is critical for: Predicting the future availability of economic water supplies and mineral resources. Assuring proper function of waste disposal facilities. Delineation of geologic hazards that may jeopardize property and public safety. Assessing trends and providing protection of water quality and soil resources. Applied technical assistance for economic development and environmental stewardship. Our goal: Providing the tools for good decision making to assure the long-term vitality of Iowa’s communities, businesses, and quality of life. Information and technical assistance are provided through web-based databases, comprehensive Geographic Information System (GIS) tools, predictive groundwater models, and watershed assessments and improvement grants. The key service we provide is direct assistance from our technical staff, working with Iowans to overcome real-world challenges. This report describes the basic functions of IGWS program areas and highlights major activities and accomplishments during calendar year 2011. More information on IGWS is available at http://www.igsb.uiowa.edu/.