9 resultados para Grazing grassland

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a real option model of the irreversible native grassland conversion decision. Upon plowing, native grassland can be followed by either a permanent cropping system or a system in which land is put under cropping (respectively, grazing) whenever crop prices are high (respectively, low). Switching costs are incurred upon alternating between cropping and grazing. The effects of risk intervention in the form of crop insurance subsidies are studied, as are the effects of cropping innovations that reduce switching costs. We calibrate the model by using cropping return data for South Central North Dakota from 1989 to 2012. Simulations show that a risk intervention that offsets 20% of a cropping return shortfall increases the sod-busting cost threshold, below which native sod will be busted, by 41% (or $43.7/acre). Omitting cropping return risk across time underestimates this sod-busting cost threshold by 23% (or $24.35/acre), and hence underestimates the native sod conversion caused by crop production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Environmental Assessment documents the National Environmental Policy Act (NEPA) process for developing a Comprehensive Conservation Plan (CCP) for the Iowa Wetland Management District (WMD, district). In general, scoping reveals issues that drive alternative ways of managing the district. Implementation of each of those alternative management styles (including the No Action Alternative) may have different effects on the physical, biological, and socio-economic environment. Analysis of these effects reveals the “preferred” alternative, which constitutes the CCP. The CCP includes goals, objectives, and strategies for the district to guide overall management for the next 15 years. The Iowa WMD consists of scattered tracts of habitat (both wetland and upland grassland) known as Waterfowl Production Areas (WPAs). As of 2011, there are 75 WPAs in 18 counties in north-central Iowa totaling 24,712 acres in fee title primarily managed by the Iowa Department of Natural Resources (DNR). Even though district acquisition has only occurred in 18 counties to date, a larger 35-county boundary is approved. This boundary follows the historic range of the poorly drained Prairie Pothole Region (PPR) in Iowa, an area known for its waterfowl production. The district also includes 575 WPA acres and approximately 434 Farm Service Agency acres in conservation easements on private land. This plan was prepared with the intent that the strong partnership with the Iowa DNR will continue over the next 15 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sands Timber Lake is a 60 acre man made impoundment near Blockton, Iowa. The lake is the centerpiece of a 235 acre park, which is owned and managed by the Taylor County Conservation Board. The park is equipped with modern campsites, hiking trails, picnic areas, and a playground. Bordering the western shoreline of the lake is a beautiful hardwood timber which inspired the parks name. Sands Timber Lake has a 4,100 acre drainage area comprised of timber, grassland, and row crop. The lake is fed by four large classic gullies which branch off into many smaller gullies dissecting the drainage area. Since construction in 1993, Sands Timber Lake has been an extremely poor fishery. In 2006 Sands Timber Lake was added to the EPA’s 303d list of impaired water bodies. Turbid water was identified as the primary stressor. In 2007 a bathometric map was made which depicts lake-bottom contours and elevations which, when compared to the original survey of the area, revealed an alarming amount of siltation. What was once a twenty-three foot deep lake in 1994 has now been reduced to a mere fourteen feet. In addition to depth being lost, the lake’s surface has been reduced by nearly ten acres, destroying vital fish habitats. Local interest in preserving and enhancing the lake has led to the completion of a thorough watershed assessment and treatment plan. Included in the plan are several elements, the first being upland treatment. Locals are insistent that if conservation is not implemented in the watershed the lake will continue to degrade and park usage will continue to decline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project brings together rural and urban partners to address the impairment of Miners Creek, a cold water trout stream in Northeast Iowa. It eliminates point source pollution contributions from the City of Guttenberg, decreases non-point source pollution and increases in-stream and near stream habitat in the Miners Creek Watershed. It specifically eliminates sewage and storm water runoff from the City of Guttenberg into Miners Creek; it develops, enhances and preserves wetlands; reduces direct livestock access to the. stream through rotational grazing systems; completes stream bank stabilizatio11 and in-stream habitat creation; targets upland land treatment; and promotes targeted application of continuous CRP and forestry practices. This project recognizes that non-point source pollution improvements could be hampered by point source pollutants ihat inhibit biologic reproduction and survival. It takes appropliate measures to improve all aspects of the stream ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twelve-Mile Lake is an 800-acre man-made lake in central Union County. The watershed has 13,964 land acres that are used by farmers for row crops and pasture. This lake is used as a water supply source for the City of Creston and the Southern Iowa Rural Water Association. In total approximately 40,000 people are affected by this project. Developed over 20 years ago, the lake and fishery was renovated and restocked and much of the shoreline was riprapped about six years ago. During its history, extensive watershed efforts have been ongoing. However, as farmland for cropland has become more valuable and demand has increased, hilly land once used for dairy farming, grazing, and CRP has been put into row crop production. Consequently, sediment loss has become an increasing issue for farmers, conservation professionals, and the Creston Waterworks Department, which owns the water treatment facility at the lake. In 2011, the Creston Water Board received a WIRB grant to implement a sedimentation structure at the north end of the main channel flowing into the lake. The WIRB funds were used for land acquisition, with the IDNR actually constructing the facility. This report depicts work performed as part of the WIRB project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miller Creek, a 19,926 acre watershed, is listed on the 2008 Section 303d Impaired Waters List. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to nutrient and sediment delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. The WIRB board provided implementation grant funds in 2010 for a three year project to treat targeted areas of 5 tons per acre or greater soil loss with an estimated reduction of 2,547 tons. As of December 1, 2012, with 95% of the funds allocated, the final results are estimated to provide a sediment delivery reduction of 4,500 tons and an estimated phosphorus reduction of 5,700 lbs per year. These accomplishments and the completion of the three year Miller Creek WIRB project represent "Phase I" of the SWCD's goals to treat the Miller Creek watershed. This application represents "Phase II" or the final phase of the Miller Creek water quality project. The Monroe SWCD plans to reduce sediment delivery by 70% on an additional 245 acres of priority land. This goal will be accomplished through installation of strategically placed structural practices, BMPs, and grazing systems. These practices will reduce soil loss, nutrient runoff, and sediment delivery as well as improve water quality and wildlife habitat in the watershed. Utilization of partnerships with NRCS and IDALS-DSC will continue to be an important part to the success of the project. Project goals will be achieved by utilizing matching funds from EQIP, and the Monroe SWCD has approved the use of District IFIP cost share funds specifically for use in the Miller Creek Watershed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-lake management can be a critical need for water quality improvement for impaired recreation lakes. Biomanipulation practices to achieve the proper balance of predatory fish, zooplankton grazing of algae, and native aquatic vegetation can sometimes restore water clarity of turbid, nutrient enriched lakes. Lakewood leaders have a renovation plan for Lake Colchester, involving several common and three innovative practices. Lakewood is prepared to pay for proven practices, but seeks WIRB grant support to test innovations in collaboration with Iowa DNR biologists, and ISU limnologists, serving as advisors and monitors for the entire project.