4 resultados para Gravity gradient torque

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Audit report on a special investigation of the City of Gravity for the period January 1, 2003 through February 15, 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravity values on this map are based on 1967 International Gravity Formula and are reduced to sea level with a Bouguer Density of 2.67 g/cm3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AASHTO has a standard test method for determining the specific gravity of aggregates. The people in the Aggregate Section of the Central Materials Laboratory perform the AASHTO T-85 test for AMRL inspections and reference samples. Iowa's test method 201B, for specific gravity determinations, requires more time and more care to perform than the AASHTO procedure. The major difference between the two procedures is that T-85 requires the sample to be weighed in water and 201B requires the 2 quart pycnometer jar. Efficiency in the Central Laboratory would be increased if the AASHTO procedure for coarse aggregate specific gravity determinations was adopted. The questions to be answered were: (1) Do the two procedures yield the same test results? (2) Do the two procedures yield the same precision? An experiment was conducted to study the different test methods. From the experimental results, specific gravity determinations by AASHTO T-85 method were found to correlate to those obtained by the Iowa 201B method with an R-squared value of 0.99. The absorption values correlated with an R-squared value of 0.98. The single operator precision was equivalent for the two methods. Hence, this procedure was recommended to be adopted in the Central Laboratory.