2 resultados para Gradation

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory was developed to allow the separate determination of the effects of the interparticle friction and interlocking of particles on the shearing resistance and deformational behavior of granular materials. The derived parameter, angle of solid friction, is independent of the type of shear test, stress history, porosity and the level of confining pressure, and depends solely upon the nature of the particle surface. The theory was tested against published data concerning the performance of plane strain, triaxial compression and extension tests on cohesionless soils. The theory also was applied to isotropically consolidated undrained triaxial tests on three crushed limestones prepared by the authors using vibratory compaction. The authors concluded that, (1) the theory allowed the determination of solid friction between particles which was found to depend solely on the nature of the particle surface, (2) the separation of frictional and volume change components of shear strength of granular materials qualitatively corroborated the postulated mechanism of deformation (sliding and rolling of groups of particles over other similar groups with resulting dilatancy of specimen), (3) the influence of void ratio, gradation confining pressure, stress history and type of shear test on shear strength is reflected in values of the omega parameter, and (4) calculation of the coefficient of solid friction allows the establishment of the lower limit of the shear strength of a granular material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.