7 resultados para Global Extreme
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
We assess the international competitiveness of the dairy industries in Argentina and Chile, combining recent market intelligence gathered from field visits with quantitative simulations of global policy reform scenarios. Both countries exhibit strong potential for export growth but face significant internal and external barriers to expanding their dairy industries. Global policy reforms would resolve some of the international obstacles to their expansion. Argentina has great potential, but it is handicapped by its current macroeconomic policies, trade policy distortions, and the uncertainty associated with policy implementation. Chile is more limited in terms of natural capacity for expansion, but it has a positive trade and investment environment.
Resumo:
Doing too much on a hot day, spending too much time in the sun or staying too long in an overheated place can cause heat-related illnesses. Know the symptoms of heat disorders and overexposure to the sun, and be ready to give first aid treatment.
Resumo:
Doing too much on a hot day, spending too much time in the sun or staying too long in an overheated place can cause heat-related illnesses. Know the symptoms of heat disorders and overexposure to the sun, and be ready to give first aid treatment.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels, June 2011
Resumo:
This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.
Resumo:
This report describes a project begun in January 1989 and completed December 1990, with the primary objective of obtaining sufficiently accurate horizontal and vertical control by using Global Positioning System (GPS) for highway applications. The ISU research group studied the operations of the Ashtech GPS receiver in static, pseudo-static, kinematic, and pseudo-kinematic modes. By using the Electronic Distance Measuring Instrument (EDMI) Calibration Baseline at ISU, the GPS receiver was tested for distance measurement accuracy. It was found that GPS measurements differed from the baseline distance by about 5.3 mm. Four projects were undertaken to further evaluate and improve the horizontal as well as the vertical accuracies of the GPS receiver -- (1) The Campus Project: with all points concentrated within a one-mile radius; (2) The Des Moines Project: a typical DOT project with all the points within a five-mile radius; (3) The Iowa Project: with all points within a 100-mile radius in the state of Iowa; and (4) The Mustang Project: an extension of the Iowa project, including a typical DOT project of about 10 miles within the inner 30 mile radius of the Iowa project.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.