5 resultados para Geo-helmintoses
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives. This research investigated the utilization of lignin-containing biofuel co-products (BCPs) in pavement soil stabilization as a new application area. Laboratory tests were conducted to evaluate the performance and the moisture susceptibility of two types of BCP-treated soil samples compared to the performance of untreated and traditional stabilizer-treated (fly ash) soil samples. The two types of BCPs investigated were (1) a liquid type with higher lignin content (co-product A) and (b) a powder type with lower lignin content (co-product B). Various additive combinations (co-product A and fly ash, co-products A and B, etc.) were also evaluated as alternatives to stand-alone co-products. Test results indicate that BCPs are effective in stabilizing the Iowa Class 10 soil classified as CL or A-6(8) and have excellent resistance to moisture degradation. Strengths and moisture resistance in comparison to traditional additives (fly ash) could be obtained through the use of combined additives (co-product A + fly ash; co-product A + co-product B). Utilizing BCPs as a soil stabilizer appears to be one of the many viable answers to the profitability of the bio-based products and the bioenergy business. Future research is needed to evaluate the freeze-thaw durability and for resilient modulus characterization of BCP-modified layers for a variety of pavement subgrade and base soil types. In addition, the long-term performance of these BCPs should be evaluated under actual field conditions and traffic loadings. Innovative uses of BCP in pavement-related applications could not only provide additional revenue streams to improve the economics of biorefineries, but could also serve to establish green road infrastructures.
Resumo:
The Iowa Conservation and Preservation Consortium, Iowa Museum Association, the State Historical Society of Iowa and the State Library requested the IMLS CTC grant funds so we could develop a statewide plan to help the stewards of cultural property plan for protection and disaster recovery of collections. We are very pleased with the results of our grant activities. Thanks to the IMLS CTC grant over 200 Iowa collection care takers have received basic training in disaster preparedness and response, 24 care takers have signed up to become cultural collection first responders, a dozen disaster planning/response trainers are available upon request, and over 40 institutions have ReAct Paks. We have created a variety of training tools ranging from basic awareness to in-depth training, established a website of disaster resources, and geo-referenced hundreds of cultural collection sites around Iowa. In addition, the IMLS grant was just the motivator we needed to participate in other national/international efforts which in turn strengthened our IMLS grant project.
Resumo:
The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.
Resumo:
In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.