1 resultado para Genetic and QTL mapping
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (26)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (37)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (36)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (6)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (26)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (14)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- Ecology and Society (2)
- Glasgow Theses Service (4)
- Hospitais da Universidade de Coimbra (2)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico do Porto, Portugal (4)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (44)
- Nottingham eTheses (1)
- Open Access Repository of Indian Theses (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (5)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (133)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (5)
- Scielo Saúde Pública - SP (55)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (152)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (104)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.