12 resultados para Generalized spike-and-wave discharges

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A water-surface-elevation profile and peak discharges for the flood of May 19, 1990, along Perry Creek in Plymouth and Woodbury Counties, Iowa, are presented in this report. The peak discharge for the May 19, 1990, flood on Perry Creek at 38th Street, Sioux City (06600000) is the second largest flood-peak discharge recorded at the streamflow-gaging station for the period 1939-95. The peak discharge for May 19, 1990, of 8,670 cubic feet per second, is approximately equal to the 35-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow- gaging stations in the Perry Creek Basin using flood information collected during 1939-95. Information on temporary bench marks and reference points established in the Perry Creek Basin during 1990-93 is also included in the report. A flood history describes rainfall conditions for the three largest floods that occurred during 1939-95 (July 1944, September 1949, and May 1990).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-surface-elevation profiles and peak discharges for the floods of 1973 and 1979 are compared to those of 1986 and 1990 in the Raccoon River basin, west-central Iowa. The profiles illustrate the 1979 and 1986 floods on the Raccoon, South Raccoon, and Middle Raccoon Rivers, the 1973 and 1986 floods on Walnut Creek, and the 1986 flood on Willow Creek and Mosquito Creek. The 1986 flood is the largest on record at U.S. Geological Survey streamflowgaging stations on the Middle Raccoon River tributary at Carroll, Middle Raccoon River near Bayard, Middle Raccoon River at Panora, and Walnut Creek at Des Moines. The 1990 flood discharge is the largest on record at U.S. Geological Survey crest-stage gaging stations on Hardin Creek near Farlin and on East Fork Hardin Creek near Churdan. The flood history given in this report describes rainfall conditions for floods that occurred during 1986 and 1990. Discharge for the 1990 flood on East Fork Hardin Creek near Churdan was 1.01 times larger than the 100-year recurrence-interval discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-surface-elevation profiles and peak discharges for the floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River Basins, south-central Iowa, are presented in this report. The profiles illustrate the 1992 floods along the Thompson, Weldon, Chariton, and South Fork Chariton Rivers and along Elk Creek in the south-central Iowa counties of Adair, Clarke, Decatur, Lucas, Madison, Ringgold, Union, and Wayne. Water-surface-elevation profiles for the floods of July 4, 1981, along the Chariton River in Lucas County and along the South Fork Chariton River in Wayne County also are included in the report for comparative purposes. The September 15-16, 1992, floods are the largest known peak discharges at gaging stations Thompson River at Davis City (station number 06898000) 57,000 cubic feet per second, Weldon River near Leon (station number 06898400) 76,200 cubic feet per second, Chariton River near Chariton (station number 06903400) 37,700 cubic feet per second, and South Fork Chariton River near Promise City (station number 06903700) 70,600 cubic feet per second. The peak discharges were, respectively, 1.7, 2.6, 1.4, and 2.1 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Thompson, Weldon, and Chariton River Basins using flood information collected through 1995. Information on temporary bench marks and reference points established in the Thompson and Weldon River Basins during 1994-95, and in the Chariton River Basin during 1983-84 and 1994-95, also is included in the report. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1959, 1981, 1992, and 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-surface-elevation profiles and peak discharges for the floods of June 17, 1990, and July 9, 1993, along Squaw Creek and the South Skunk River, in Ames, Iowa, are presented in this report. The maximum flood-peak discharge of 24,300 cubic feet per second for the streamflow-gaging station on Squaw Creek at Ames, Iowa (station number 05470500) occurred on July 9, 1993. This discharge was 80 percent larger than the 100-year recurrence-interval discharge and exceeded the previous record flood-peak discharge of June 17, 1990, by 94 percent. The July 9, 1993, flood-peak discharge of 26,500 cubic feet per second on the South Skunk River below Squaw Creek (station number 05471000) was also a peak of record, exceeding the previous record flood-peak discharge of June 27,1975, by 80 percent, and the 100-year recurrence-interval discharge by 60 percent. A flood history describes rainfall conditions for floods that occurred during 1990 and 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-surface-elevation profiles and peak discharges for the floods of July 12, 1972, March 19, 1979, and June 15, 1991, in the Turkey River Basin, northeast Iowa, are presented in this report. The profiles illustrate the 1979 and 1991 floods along the Turkey River in Fayette and Clayton Counties and along the Volga River in Clayton County; the 1991 flood along Roberts Creek in Clayton County and along Otter Creek in Fayette County; and the 1972 flood along the Turkey River in Winneshiek and Fayette Counties. Watersurface elevations for the flood of March 19, 1979, were collected by the Iowa Natural Resources Council. The June 15, 1991, flood on the Turkey River at Garber (station number 05412500) is the largest known flood-peak discharge at the streamflow-gaging station for the period 1902-95. The peak discharge for June 15, 1991, of 49,900 cubic feet per second was 1.4 times larger than the 100-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Turkey River Basin using flood information collected during 1902-95. Information on temporary bench marks and reference points established in the Turkey River Basin during 1981, 1992, and 1996 also is included in the report. A flood history describes rainfall conditions for floods that occurred during 1922, 1947, 1972, 1979, and 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, the Iowa Department of Transportation has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey report (published in 1987) as the primary methods to estimate annual exceedance-probability discharge (AEPD) for small (20 square miles or less) drainage basins in Iowa. With the publication of new multi- and single-variable RREs by the U.S. Geological Survey (published in 2013), the Iowa Department of Transportation needs to determine which methods of AEPD estimation provide the best accuracy and the least bias for small drainage basins in Iowa. Twenty five streamgages with drainage areas less than 2 square miles (mi2) and 55 streamgages with drainage areas between 2 and 20 mi2 were selected for the comparisons that used two evaluation metrics. Estimates of AEPDs calculated for the streamgages using the expected moments algorithm/multiple Grubbs-Beck test analysis method were compared to estimates of AEPDs calculated from the 2013 multivariable RREs; the 2013 single-variable RREs; the 1987 single-variable RREs; the TR-55 rainfall-runoff model; and the Iowa Runoff Chart. For the 25 streamgages with drainage areas less than 2 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the TR-55 method for flood regions 1 and 3 (published in 2013) and by using the 1987 single-variable RREs for flood region 2 (published in 2013). For drainage basins with areas between 2 and 20 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the 1987 single-variable RREs for the Southern Iowa Drift Plain landform region and for flood region 3 (published in 2013), by using the 2013 multivariable RREs for the Iowan Surface landform region, and by using the 2013 or 1987 single-variable RREs for flood region 2 (published in 2013). For all other landform or flood regions in Iowa, use of the 2013 single-variable RREs may provide the best overall accuracy and the least bias. An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1–4 from the 1987 single-variable RREs and for flood regions 1–3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical summaries of streamflow data collected at 156 streamflow-gaging stations in Iowa are presented in this report. All gaging stations included for analysis have at least 10 years of continuous record collected before or through September 1996. The statistical summaries include (1) statistics of monthly and annual mean discharges; (2) monthly and annual flow durations; (3) magnitudes and frequencies of instantaneous peak discharges (flood frequencies); and (4) magnitudes and frequencies of high and low discharges. Also presented for each gaging station is a graph of the annual mean flows and, for most stations, selected values from the most-recent stage-discharge rating table.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four classes of variables are apparent in the problem of scour around bridge piers and abutments--geometry of piers and abutments, stream-flow characteristics, sediment characteristics, and geometry of site. The laboratory investigation, from its inception, has been divided into four phases based on these classes. In each phase the variables in three of the classes are held constant and those in the pertinent class are varied. To date, the first three phases have been studied. Typical scour bole patterns related to the geometry of the pier or abutment have been found. For equilibrium conditions of scour with uniform sand, the velocity of flow and the sand size do not appear to have any measurable effects on the depth of scour. This result is especially encouraging in the search for correlation between model and prototype since it would indicate that, primarily, only the depth of flow might be involved in the scale effect. The technique of model testing has been simplified, therefore, because rate of sediment transportation does not need to be scaled. Prior to the establishment of equilibrium conditions, however, depths of scour in excess of those for equilibrium conditions have been found. A concept of active scour as an imbalance between sediment transport capacity and rate of sediment supply has been used to explain the laboratory observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.