5 resultados para Fuzzy decision support system

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adverse weather conditions dramatically affect the nation’s surface transportation system. The development of a prototype winter Maintenance Decision Support System (MDSS) is part of the Federal Highway Administration’s effort to produce a prototype tool for decision support to winter road maintenance managers to help make the highways safer for the traveling public. The MDSS is based on leading diagnostic and prognostic weather research capabilities and road condition algorithms, which are being developed at national research centers. In 2003, the Iowa Department of Transportation was chosen as a field test bed for the continuing development of this important research program. The Center for Transportation Research and Education assisted the Iowa Department of Transportation by collecting and analyzing surface condition data. The Federal Highway Administration also selected five national research centers to participate in the development of the prototype MDSS. It is anticipated that components of the prototype MDSS system developed by this project will ultimately be deployed by road operating agencies, including state departments of transportation, and generally supplied by private vendors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is the product of a first-year research project in the University Transportation Centers Program. This project was carried out by an interdisciplinary research team at The University of Iowa's Public Policy Center. The project developed a computerized system to support decisions on locating facilities that serve rural areas while minimizing transportation costs. The system integrates transportation databases with algorithms that specify efficient locations and allocate demand efficiently to service regions; the results of these algorithms are used interactively by decision makers. The authors developed documentation for the system so that others could apply it to estimate the transportation and route requirements of alternative locations and identify locations that meet certain criteria with the least cost. The system was developed and tested on two transportation-related problems in Iowa, and this report uses these applications to illustrate how the system can be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement projects encountering 13,000- to 150-year-old Native American sites. This project identifies critical variables for assessing prehistoric sites potential, examines the quality of available data about the variables, and applies the data to creating a decision support framework for use by the Iowa Department of Transportation (Iowa DOT) and others. An analysis of previous archaeological surveys indicates that subsurface testing to discover buried sites became increasingly common after 1980, but did not become routine until after the adoption of guidelines recommending such testing, in 1993. Even then, the average depth of testing has been relatively shallow. Alluvial deposits of sufficient age, deposited in depositional environments conducive to human habitation, are considerably thicker than archaeologists have routinely tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa State Profile Tool is a comprehensive, high-level assessment of Iowa’s progress toward a balanced long-term care system – a system that relies less on institutional services and provides greater opportunities for the in-home and community-based services that most people prefer. This report includes long-term support for people of all ages and disability types and is based on a variety of state and federal data sources and interviews with public and private leaders in Iowa’s long-term care system.