5 resultados para Fronts of mud

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud". Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950s, Iowa was faced with severe PCC pavement deterioration called D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three-year-old pavement on US 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant. To investigate the cause of the deterioration, the Iowa DOT and Iowa State University jointly purchased a high resolution, low vacuum Hitachi Scanning Electron Microscope (SEM) with an energy dispersion detector. Subsequent evaluation identified no concentration of silica gel (silicon-Si), but did identify substantial amounts of sulfur-S and aluminum-AL (assumed to be ettringite) in the air voids. Some of these voids have cracks radiating from them leading us to conclude that the ettringite filled voids were a center of pressure causing the crack. The ettringite in the voids, after being subjected to sodium chloride (NaCl), initially swells and then dissolves. This low vacuum SEM research of PCC pavement deterioration supports the following conclusions: (1) A low vacuum SEM and an energy dispersion detector are very important for proper evaluation of PCC pavement deterioration; (2) There are instances today where PCC pavement deterioration is mistakenly identified as ASR; (3) Ettringite initially expands when subjected to NaCl; and the ettringite filled voids are a center-of-pressure that cracks the PCC; and (4) The deterioration of some current premature PCC pavement distress locations is caused by factors related to the formation of excessive ettringite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud.” Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950's, Iowa was faced with severe PCC pavement deterioration referred to as D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three year old pavement on us 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant.