7 resultados para Frequency characteristics
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report provides techniques and procedures for estimating the probable magnitude and frequency of floods at ungaged sites on Iowa streams. Physiographic characteristics were used to define the boundaries of five hydrologic regions. Regional regression equations that relate the size of the drainage area to flood magnitude are defined for estimating peak discharges having specified recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Regional regression equations are applicable to sites on streams that have drainage areas ranging from 0.04 to 5,150 square miles provided that the streams are not affected significantly by regulation upstream from the sites and that the drainage areas upstream from the sites are not mostly urban areas. Flood-frequency characteristics for the mainstems of selected rivers are presented in graphs as a function of drainage area.
Resumo:
Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.
Resumo:
An experimental modification of the transverse groove surface texture of a section of an urban interstate highway was performed by the Iowa Department of Transportation. Transverse groove texturing i s a design feature required by the Federal Highway Administration t o reduce skidding under wet pavement conditions. Adjacent residents claimed the texturing was the cause of especially annoying tonal characteristics within the traffic noise. A research proposal to modify the existing texture pattern by surface grinding and to study the noise and friction effects was approved for funding by the Iowa Highway Research Board. Results i n the form of a comparison between traffic noise before modification and traffic noise immediately after and 15 months after modification indicate that the change in surface texture has lowered overall traffic noise levels by reducing a high frequency component of the traffic noise spectrum. Fraffic testing data show reduced capacity of the roadway to inhibit wet pavement skidding as a result of the surface modification.
Resumo:
This report deals with the probable impact of urban development on the magnitude and frequency of flooding in the lower reach of the Walnut Creek Basin.
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
The objective of this project was to assess the predictive accuracy of flood frequency estimation for small Iowa streams based on the Rational Method, the NRCS curve number approach, and the Iowa Runoff Chart. The evaluation was based on comparisons of flood frequency estimates at sites with sufficiently long streamgage records in the Midwest, and selected urban sites throughout the United States. The predictive accuracy and systematic biases (under- or over-estimation) of the approaches was evaluated based on forty-six Midwest sites and twenty-one urban sites. The sensitivity of several watershed characteristics such as soil properties, slope, and land use classification was also explored. Recommendations on needed changes or refinements for applications to Iowa streams are made.