36 resultados para Flow-Pipe-Seepage Coupling
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite." It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive compared with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert to avoid deformation of the liner.
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite". It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert.
Resumo:
This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.
Resumo:
The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.
Resumo:
Headcuts (known also as primary knickpoints) and knickpoints (known also as secondary knickpoints) have been found to contribute to the accelerated riverbed degradation problem in the midwestern United States. Step-changes that occur at the head of channel networks are referred to as headcuts, and those that occur within the confines of channel banks are referred to as knickpoints. The formation of headcuts and knickpoints and their upstream migration have been linked to the over-steepening of stream reaches when the flow plunges to the bed and creates a plunge pool. Secondary flow currents and seepage are believed to be some other parameters contributing to the formation and evolution of headcuts and knickpoints. Ongoing research suggests that headcuts and knickpoints, where they form and migrate, may account for 60% (or more) of the bed erosion in the streams. Based on preliminary observations, there is a strong indication that headcuts and knickpoints can also have a greater influence on flow thalweg alignment (line of deepest flow) for small rivers. A shift in thalweg toward a riverbank or embankment is usually a prime factor contributing to riverbank erosion and scour.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.
Resumo:
Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.