16 resultados para Floor
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The objectives of this research project are: (1) To determine the feasibility of proportioning, mixing, placing and finishing a dense portland cement concrete in a bridge floor using conventional mixing, placing and finishing equipment. (2) To determine the economics, longevity, maintenance performance and protective qualities of a dense portland cement concrete bridge floor when using a high rangewater reducing admixture. The purpose of a high range water reducing admixture is to produce a dense, high quality concrete at a low water-cement ratio witj adequate workability. A low water-cement ratio contributes greatly to increased strength. The normal 7 day strength of untreated concrete would be expected i n 3 days using a superplasticizer. A dense concrete also has the desirable properties of excellent durability and reduced permeability. It is felt that a higher quality, denser, higher strength portland cement concrete can be produced and placed, using conventional equipment, by the addition of a high range water reducing admixture. Such a dense concrete, w i t h a water/cement ratio of approximately 0.30 to 0.35, would be expected to be much less permeable and thus retard the intrusion of chloride. With care and attention given to obtaining the design cover over steel (2% inches clear), it i s hoped that protection for the design life of the structure will be obtained. Evaluation of this experimental concrete bridge floor included chloride content and delamination testing of the concrete floor five years after construction. A comparitive evaluation o f a control section o f concrete without the water reducing admixture was conducted. Other items o f comparison include workability during construction, strength, density, water-cement ratio and chloride penetration.
Resumo:
I map of all committee meeting room during the legislative session for 2013.
Resumo:
Much effort is being expended by various state, federal, and private organizations relative to the protection and preservation of concrete bridge floors. The generally recognized culprit is the chloride ion, from the deicing salt, reaching the reinforcing steel, and along with water and oxygen, causing corrosion. The corrosion process exerts pressure which eventually causes cracks and spalls in the bridge floor. The reinforcing· has been treated and coated, various types of "waterproof" membranes have been placed on the deck surface, decks have been surfaced with dense and modified concretes, decks have been electrically protected, and attempts to internally seal the concrete have been made. As of yet, no one method has been proven and accepted by the various government agencies as being the "best" when considering the initial cost, application effort, length and effectiveness of protection, etc.
Resumo:
Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.
Resumo:
The use of a high range water reducer in bridge floors was initiated by an Iowa Highway Research Board project (HR-192) in 1977 for two basic reasons. One was to determine the feasibility of using a high range water reducer (HRWR) in bridge floor concrete using conventional concrete proportioning, transporting and finishing equipment. The second was to determine the performance and protective qualities against chloride intrusion of a dense concrete bridge floor by de-icing agents used on Iowa's highways during winter months. This project was basically intended to overcome some problems that developed in the original research project. The problems alluded to are the time limits from batching to finishing; use of a different type of finishing machine; need for supplemental vibration on the surface of the concrete during the screeding operation and difficulty of texturing. The use of a double oscillating screed finishing machine worked well and supplemental vibration on one of the screeds was not needed. The limit of 45 minutes from batching the concrete to placement on the deck was verified. This is a maximum when the HRWR is introduced at the batch plant. The problem of texturing was not solved completely but is similar to our problems on the dense "Iowa System" overlay used on bridge deck repair projects. This project reinforced some earlier doubts about using truck transit mixers for mixing and transporting concrete containing HRWR when introduced at the batch plant.
Resumo:
A photographic and video record of the project to recreate and reconstruct the glass floor for the opening between the ground and first floors in the rotunda of the Iowa State Capitol. The original glass floor was removed in the early 20th century, but the decision was made to put a new one in to help improve the acoustics and air flow in the building.
Resumo:
An easy-living home requires a full-sized bathroom on the main level. Family members will appreciate the extra space and guests of all ages and abilities will feel more welcome. At a minimum, you’ll need a five foot circle of open floor space for maneuvering a wheelchair between bathroom fixtures. A small powder room won’t work for guests who use walkers or wheelchairs. A shower stall—with no curb to step over—is more convenient than a tub for most guests. Make sure the doorway opening for the bathroom is at least 32 inches wide (preferably 36 inches). Universal design features, such as these, make homes better for everyone.
Resumo:
How people choose to live depends on a variety of social and economic circumstances. Single family dwellings, extended family compounds, and communal apartment blocks are all forms of residential architecture that have ancient roots and occur in every culture. Each form both reflects and affects the living styles of the people who reside there. The double house, which shelters two families in units separated by a wall or floor, balances the convenience of an apartment with the psychological comforts of a home. During the mid to late nineteenth and early twentieth centuries in the United States, the double house was hugely popular in some cities, such as Minneapolis and Milwaukee, but only a minimal presence in Des Moines
Resumo:
This list of State Librarians, along with their photos or portraits, and brief biographies was prepared for the March 2008 celebration of the 100th Anniversary of the State Library’s move from the 2nd floor of the State Capitol into the east wing of the State Historical Memorial and Art Building on March 1908 (now the Miller Building, since 2002).
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. April 11, 2012 THIS WEEK: Iowa State Capitol Mosaics BACKGROUND: Frederick Dielman Born in Germany in 1847, Frederick Dielman was an illustrator and figure painter. Dielman designed the six mosaic panels in the Iowa State Capitol along the east wall on the third floor. The mosaics were actually made in Venice, Italy, and shipped to the Capitol. The mosaics in the Capitol represent the three branches of government, education, defense, and charities.
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained THIS WEEK:Controlling Noise and Dust During the 1956 Replacement of the Old Floor Tile on First Floor of Capitol BACKGROUND:This article was copied from the Capitol Building Newspaper Clippings Scrapbook. The scrapbook contains clippings from 1906 to the 1970s and was compiled by the State Library of Iowa—Law Library.
Resumo:
For more than 80 years, visitors to the Iowa State Historical, Memorial, and Art Building were treated to the state’s collection of historic documents, literature, portraits, and historical, geological, and archeological artifacts. Those who visited might have memories of the spectacular sand paintings by Iowan Andrew Clemens, the variety of taxidermy Iowa animals, the pioneer Conestoga wagon in the basement, the biplane hanging from the dome ceiling, the odd display by the medical library of things removed from stomachs, or the Native American display on the third floor. This booklet is a look back at the origins of the museum. It includes some of the Historical Department reports, legislation passed by the general assembly, newspaper and magazine articles, and photographs pertaining to the museum and library. It is not intended to be an exhaustive review and documentation of displays and exhibits. It is a brief overview of the building’s history and some photographs that may bring back memories, for some, of a field trip as a student. This booklet has been created from a variety of source materials: photographs, newspaper articles, and various reports. The following have contributed: State Library of Iowa, Iowa State Historical Society, the Iowa Judicial Branch, Susan Wallace, Helen Dagley, Barb Corson, Jerome Thompson, Pam Rees, Georgiann Fischer, and Jason Mrachina.
Resumo:
The twenty-first century Iowa State Capitol contains state-of-the-art fire protection. Sprinklers and smoke detectors are located in every room and all public hallways are equipped with nearby hydrants. The Des Moines Fire Department is able to fight fires at nearly any height. However, on Monday morning, January 4, 1904, the circumstances were much different. By the beginning of 1904, the Capitol Improvement Commission had been working in the Capitol for about two years. The commissioners were in charge of decorating the public areas of the building, installing the artwork in the public areas, installing a new copper roof, re-gilding the dome, replacing windows, and connecting electrical lines throughout. Electrician H. Frazer had been working that morning in Committee Room Number Five behind the House Chamber, drilling into the walls to run electrical wires and using a candle to light his way. The investigating committee determined that Frazer had left his work area and had neglected to extinguish his candle. The initial fire alarm sounded at approximately 10 a.m. Many citizen volunteers came to help the fire department. Capitol employees and state officials also assisted in fighting the fire, including Governor Albert Cummins. The fire was finally brought under control around 6 p.m., although some newspaper accounts at the time reported that the fire continued smoldering for several days. Crampton Linley was the engineer working with the Capitol Improvement Commission. He was in the building at the time of the fire and was credited with saving the building. Linley crawled through attic areas to close doors separating wings of the Capitol, an action which smothered the flames and brought the fire under control. Sadly, Linley did not live long enough to be recognized for his heroism. The day after the fire, while examining the damage, Linley fell through the ceiling of the House Chamber and died instantly from severe head injuries. The flames had burned through the ceiling and caused much of it to collapse to the floor below, while the lower areas of the building had been damaged by smoke and water. Elmer Garnsey was the artist hired by the Capitol Improvement Commission to decorate the public areas of the building. Therefore, he seemed the logical candidate to be given the additional responsibility of redecorating the areas damaged by the fire. Garnsey had a very different vision for the decoration, which is why the House Chamber, the old Supreme Court Room, and the old Agriculture offices directly below the House Chamber have a design that is very different from the areas of the building untouched by the fire.
Resumo:
This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.