4 resultados para Flexible pavements
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
State highway engineers realized a need for a numerical quality index and began planning for a research project of this type in 1951. The Present Serviceability Index was developed through the AASHO (now AASHTO) Road Test near Ottawa, Illinois, from 1956 to 1962.1 longitudinal profile and physical deterioration such as cracking, patching, and rut depth (for flexible pavements) were considered in deriving these Present Serviceability Index (PSI) equations
Resumo:
This report summarizes Iowa results of a five year, Pooled Fund study involving the Wisconsin, Iowa, and Minnesota Departments of Transportation (DOTs) designed to 1) assess the public's perceptions of the DOTs' pavement improvement strategies and 2) develop customer-based thresholds of satisfaction with pavements on rural two lane highways in each state as related to the DOTs' physical indices, such as pavement ride and condition. The primary objective was to seek systematic customer input to improve the DOTs' pavement improvement policies by 1) determining how drivers perceive the DOTs' pavements in terms of comfort and convenience but also in terms of other tradeoffs the DOTs had not previously considered, 2) determining relationships between perceptions and measured pavement condition thresholds (including a general level of tolerance of winter ride conditions in two of the states), and 3) identifying important attributes and issues that may not have been considered in the past. Secondary objectives were 1) to provide a tool for systematic customer input in the future and 2) to provide information which can help structure public information programs. A University of Wisconsin-Extension survey lab conducted the surveys under the direction of a multi-disciplinary team from Marquette University. Approximately 4500 drivers in the 3 states participated in the 3 phases of the project. Researchers conducted 6 focus groups in each state, approximately 400 statewide telephone interviews in each state and 700-800 targeted telephone interviews in each state. Approximately 400 winter ride interviews were conducted in Wisconsin and Minnesota. A summary of the method for each survey is included. In Phase I, focus groups were conducted with drivers to get an initial indication of what the driving public believes in regards to pavements and to frame issues for inclusion in the more representative statewide surveys of drivers conducted in Phase II. Phase II interviews gathered information about improvement policy tradeoff issues and about preliminary thresholds of improvement in terms of physical pavement indices. In Phase III, a two step recruitment and post-drive interview procedure yielded thresholds of ride and condition index summarized for each state. Results show that, in general, the driving public wants longer lasting pavements and are willing to pay for them. They want to minimize construction delay, improve entire sections of highway at one time but they dislike detours, and prefer construction under traffic even if it stretches out construction time. Satisfaction with pavements does not correlate directly to a high degree with physical pavement indices, but was found instead to be a complex, multi-faceted phenomenon. A psychological model was applied to explain satisfaction to a respectable degree for the social sciences. Results also indicate a high degree of trust in the 3 DOTs which is enhanced when the public is asked for input on specific highway segments. Conclusions and recommendations include a 3-step methodology for other state studies.
Resumo:
The design number of gyrations (Ndesign) introduced by the Strategic Highway Research Program (SHRP) and used in the Superior Performing Asphalt Pavement (Superpave) mix design method has been commonly used in flexible pavement design throughout the US since 1996. Ndesign, also known as the compaction effort, is used to simulate field compaction during construction and has been reported to produce air voids that are unable to reach ultimate pavement density within the initial 2 to 3 years post-construction, potentially having an adverse impact on long-term performance. Other state transportation agencies have conducted studies validating the Ndesign for their specific regions, which resulted in modifications of the gyration effort for the various traffic levels. Validating this relationship for Iowa asphalt mix designs will lead to better correlations between mix design target voids, field voids, and performance. A comprehensive analysis of current Ndesign levels investigated the current levels with existing mixes and pavements and developed initial asphalt mix design recommendations that identify an optimum Ndesign through the use of performance data tests.
Resumo:
Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).