15 resultados para Fines and recoveries.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
When a court imposes a fine or forfeiture for a violation of state law, or city or county ordinance, except an ordinance regulating the parking of motor vehicles, the court or the clerk of the district court shall assess an additional penalty in the form of a criminal penalty surcharge equal to thirty-five percent of the fine or forfeiture imposed.
Resumo:
This Compendium of Scheduled Violations and Scheduled Fines is designed and published by the Iowa Department of Public Safety and the Department of Natural Resources. It is intended for the use of all courts, law enforcement officers and agencies of the State of Iowa. The cost of this publication is paid out of the budget of the Department of Public Safety and the Department of Natural Resources.
Resumo:
This Compendium of Scheduled Violations and Scheduled Fines is designed and published by the Iowa Department of Public Safety and the Department of Natural Resources. It is intended for the use of all courts, law enforcement officers and agencies of the State of Iowa. The cost of this publication is paid out of the budget of the Department of Public Safety and the Department of Natural Resources.
Resumo:
This Compendium of Scheduled Violations and Scheduled Fines is designed and published by the Iowa Department of Public Safety and the Department of Natural Resources. It is intended for the use of all courts, law enforcement officers and agencies of the State of Iowa. The cost of this publication is paid out of the budget of the Department of Public Safety and the Department of Natural Resources.
Resumo:
This Compendium of Scheduled Violations and Scheduled Fines is designed and published by the Iowa Department of Public Safety and the Department of Natural Resources. It is intended for the use of all courts, law enforcement officers and agencies of the State of Iowa. The cost of this publication is paid out of the budget of the Department of Public Safety and the Department of Natural Resources.
Resumo:
When a court imposes a fine or forfeiture for a violation of state law, or city or county ordinance, except an ordinance regulating the parking of motor vehicles, the court or the clerk of the district court shall assess an additional penalty in the form of a criminal penalty surcharge equal to thirty-five percent of the fine or forfeiture imposed.
Resumo:
The federal government mandated that all non-federal public safety license holders on the frequencies ranging from 150 to 512 megahertz reduce their operating bandwidth from 25 kilohertz to 12.5 kilohertz. Narrowband channels must update their operating licenses by January 1, 2013. Failure to do so will result in the loss of communication capabilities and fines. This issue review analyzes the impact to state agencies of the federal mandate requiring all two-way radio systems and some paging networks, including those used by public-safety agencies, to meet the new narrowband requirements by January 1, 2013. This issue review does not address the impact to local communications systems.
Resumo:
This project included the following tasks: (1) Preparation of a questionnaire and survey of all 99 Iowa county engineers for input on current surfacing material practice; (2) County survey data analysis and selection of surfacing materials gradations to be used for test road construction; (3) Solicitation of county engineers and stone producers for project participation; (4) Field inspection and selection of the test road; (5) Construction of test road using varying material gradations from a single source; and (6) Field and laboratory testing and test road monitoring. The results of this research project indicate that crushed stone surfacing material graded on the fine side of Iowa Department of Transportation Class A surfacing specifications provides lower roughness and better rideability; better braking and handling characteristics; and less dust generation than the coarser gradations. It is believed that this material has sufficient fines available to act as a binder for the coarser material, which in turn promotes the formation of tight surface crust. This crust acts to provide a smooth riding surface, reduces dust generation, and improves vehicle braking and handling characteristics.
Use of Reagent Grade Versus Industrial Grade Trichlorethylene in Asphalt Recoveries, MLR-83-05, 1983
Resumo:
This is a continuation of a project initiated a year ago to determine any differences in test results on recovered asphalt cements caused by the use of industrial grade of solvent as compared with the reagent grade. AASHTO specifies the use of reagent grade of trichlorethylene, but the Laboratory uses industrial grade which costs much less. Last year this objective of the project was aborted when it was found that a larger difference in test results was obtained between the two distillation apparatuses than between the two solvents, Then all efforts were directed toward obtaining uniformity in test results between the apparatuses under the east hood as compared with that under the west hood. Considerable progress was made toward this end. (See report under this same title dated April 1982). The objective this year was to again evaluate the results when using both variables (apparatuses and solvents). Another objective developed later in this investigation; this was to determine any differences in test results on recovered asphalt cements caused by the use of reclaimed trichlorethylene (from the distillation process) as compared with the use of industrial grade of solvent. At the present time the reclaimed trichlorethylene is discarded. If the reclaimed solvent could be used for further recoveries, a considerable savings in solvent costs would result.
Resumo:
Presented in this report is an investigation of the use of "sand-lightweight" concrete in prestressed concrete structures. The sand-lightweight concrete consists of 100% sand substitution for fines, along with Idealite coarse and medium lightweight aggregate and Type I Portland Cement.