11 resultados para Fine-grained

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concretes with service lives of less than 15 years and those with lives greater than 40 years were studied with petrographic microscope, scanning electron microscope, and electron microprobe to determine why these two groups of concrete exhibit such different degrees of durability under highway conditions. Coarse aggregate used in both types of concrete were from dolomite rock, but investigation revealed that dolomite aggregate in the two groups of concretes were much different in several respects. The poorly-performing aggregate is fine-grained, has numerous euhedral and subhedral dolomite rhombohedra, and has relatively high porosity. Aggregate from durable concrete is coarse-grained, with tightly interlocked crystal fabric, anhedral dolomite boundaries, and low porosity. Aggregate in short service life concrete was found to have undergone pervasive chemical reactions with the cement which produced reaction rims on the boundaries of coarse aggregate particles and in the cement region adjacent to aggregate boundaries. Textural and porosity differences are believed to be chiefly responsible for different service lives of the two groups of concrete. The basic reaction that has occurred in the short service life concretes between coarse aggregate and cement is an alkali-dolomite reaction. In the reaction dolomite from the aggregate reacts with hydroxide ions from the cement to free magnesium ions and carbonate ions, and the magnesium ions precipitate as brucite, Mg(OH)2. Simultaneously with this reaction, a second reaction occurs in which product carbonate ions react with portlandite from the cement to form calcite and hydroxide ions. Crystal growth pressures of newly formed brucite and calcite together with other processes, e.g. hydration state changes of magnesium chloride hydrates, lead to expansion of the concretes with resultant rapid deterioration. According to this model, magnesium from any source, either from reacting dolomite or from magnesium road deicers, has a major role in highway concrete deterioration. Consequently, magnesium deicers should be used with caution, and long-term testing of the effects of magnesium deicers on highway concrete should be implemented to determine their effects on durability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project involved the evaluation of several aggregates previously rated poor to excellent with respect to skid resistance and certain mix design parameters. An open graded asphalt friction course was evaluated using 4 comparably graded aggregates: quartzite, fine grained limestone, coarse limestone and lightweight expanded shale. The performance investigations involved the verification of observations of the quartzite test sections, evaluation of the effect of blending the superior quartzite with a typical coarse grained-textured limestone, and the evaluation of the limestone. The effects of traffic on the aggregates used in the test sections were studied, as well as the relationship between asphalt content levels and traffic with respect to performance. The bond of the open graded friction course mixture was also evaluated. The SN performance of all test sections after sixteen months of exposure was found to be satisfactory in that none of the material combinations had polished to the point where unacceptable SN levels developed. When material combinations were compared, significant differences were noted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Velocity-density tests conducted in the laboratory involved small 4-inch diameter by 4.58-inch-long compacted soil cylinders made up of 3 differing soil types and for varying degrees of density and moisture content, the latter being varied well beyond optimum moisture values. Seventeen specimens were tested, 9 with velocity determinations made along two elements of the cylinder, 180 degrees apart, and 8 along three elements, 120 degrees apart. Seismic energy was developed by blows of a small tack hammer on a 5/8-inch diameter steel ball placed at the center of the top of the cylinder, with the detector placed successively at four points spaced 1/2-inch apart on the side of the specimen involving wave travel paths varying from 3.36 inches to 4.66 inches in length. Time intervals were measured using a model 217 micro-seismic timer in both laboratory and field measurements. Forty blows of the hammer were required for each velocity determination, which amounted to 80 blows on 9 laboratory specimens and 120 blows on the remaining 8 cylinders. Thirty-five field tests were made over the three selected soil types, all fine-grained, using a 2-foot seismic line with hammer-impact points at 6-inch intervals. The small tack hammer and 5/8-inch steel ball was, again, used to develop seismic wave energy. Generally, the densities obtained from the velocity measurements were lower than those measured in the conventional field testing. Conclusions were reached that: (1) the method does not appear to be usable for measurement of density of essentially fine-grained soils when the moisture content greatly exceeds the optimum for compaction, and (2) due to a gradual reduction in velocity upon aging, apparently because of gradual absorption of pore water into the expandable interlayer region of the clay, the seismic test should be conducted immediately after soil compaction to obtain a meaningful velocity value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the search for new soil stabilizing agents the effects of six organic cations on plastic limit, liquid limit, shrinkage limit, air-dry strength and rate of slaking of a highly plastic clay subsoil were studied. In all cases the plasticity index and shrinkage were reduced by the treatments. The air-dry strength was lowered in varying degree, which was the only undesirable effect noted. With one exception resistance to slaking was improved. It is concluded that large organic cations show promise as possible stabilizing agents for highly plastic fine-grained soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa Citizen Aide - Ombudsman Office received a complaint on February 22, 2010, concerning the manner in which the mayor and several city council members for the City of Monticello (City) attempted to remove the city administrator from his position. It was alleged that the mayor and at least one council member went to the homes of other council members and sought their signatures on a letter of offer requesting the city administrator to resign or face a vote to terminate his employment. We were asked to investigate whether this action complied with Iowa’s Open Meetings Law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to evaluate the quality (angularity, mortar strengths and alkali-silica reactivity) of fine aggregate for Iowa portland cement concrete (PCC) pavements. Sands were obtained from 30 sources representative of fine aggregate across Iowa. The gradation, fineness modulus and mortar strengths were determined for all sands. Angularity was evaluated using a new National Aggregate Association (NAA) flow test. The NAA uncompacted void values are significantly affected by the percent of crushed particles and are a good measure of fine aggregate angularity. The alkali-silica reactivity of Iowa sands was measured by the ASTM P214 test. By P214 many Iowa sands were identified as being reactive while only two were innocuous. More research is needed on P214 because pavement performance history has shown very little alkali-silica reactivity deterioration of pavement. Six of the sands tested by P214 were evaluated using the Canadian Prism Test. None were identified as being reactive by the Canadian Prism Test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several locations of Iowa, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than Iowa specifications. The objective of the study was to develop standard mix designs to permit the use of finer graded sand for PC concrete. Three hundred cylinders were made from five sands available in the state. Based on the results of the study, the following are recommended: (1) Create another class of concrete sand by: (a) lowering the current mortar strength ratio from 1.5 to 1.3, (b) raising the allowance for the percent passing one sieve and retained on the next from 40 to 45, and (c) including a provision that 25 to 60 percent passing the number 30 sieve is required for the sand; and (2) Modify the standard paving mixes with and without fly ash for use with the finer sand as follows: (a) 8% more cement and fly ash for B-2 to B-5 mixes, (b) 7% more cement and fly ash for A-2 to A-5 mixes, and (c) 5% more cement and fly ash for C-2 to C-5 mixes and water reduced mixes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specifications for concrete sand in Iowa have been used for many years with very good results. In several locations of the state, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than the Iowa specification. The ASTM and AASHTO specifications are based on the use of trial mix testing prior to construction. Iowa does not currently use the trial mix procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain areas of Iowa abound in loess, others contain soft limestones that are readily and cheaply available, and a large portion of the state is underlaid with sand. None of these materials is considered suitable in present practices for use in all-weather road construction. The loess is too fine and too difficult to handle; the limestones are considered too soft, and some of the harder ones unsound for this use; the sands are not naturally of the desired gradation and do not lend themselves to blending into satisfactory gradations. The purpose of this project is, therefore, to study and develop means and to determine the feasibility of using these materials, loess, fine sand, and soft limestones, either separately or in combinations in conjunction with liquid binders to produce paving mixtures applicable for all-weather road construction. Also included in the project was the development of methods of processing any of these materials, if necessary, to make them suitable for the desired purpose