8 resultados para Failure criteria

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deterioration in portland cement concrete (PCC) pavements can occur due to distresses caused by a combination of traffic loads and weather conditions. Hot mix asphalt (HMA) overlay is the most commonly used rehabilitation technique for such deteriorated PCC pavements. However, the performance of these HMA overlaid pavements is hindered due to the occurrence of reflective cracking, resulting in significant reduction of pavement serviceability. Various fractured slab techniques, including rubblization, crack and seat, and break and seat are used to minimize reflective cracking by reducing the slab action. However, the design of structural overlay thickness for cracked and seated and rubblized pavements is difficult as the resulting structure is neither a “true” rigid pavement nor a “true” flexible pavement. Existing design methodologies use the empirical procedures based on the AASHO Road Test conducted in 1961. But, the AASHO Road Test did not employ any fractured slab technique, and there are numerous limitations associated with extrapolating its results to HMA overlay thickness design for fractured PCC pavements. The main objective of this project is to develop a mechanistic-empirical (ME) design approach for the HMA overlay thickness design for fractured PCC pavements. In this design procedure, failure criteria such as the tensile strain at the bottom of HMA layer and the vertical compressive strain on the surface of subgrade are used to consider HMA fatigue and subgrade rutting, respectively. The developed ME design system is also implemented in a Visual Basic computer program. A partial validation of the design method with reference to an instrumented trial project (IA-141, Polk County) in Iowa is provided in this report. Tensile strain values at the bottom of the HMA layer collected from the FWD testing at this project site are in agreement with the results obtained from the developed computer program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crashworthy, work-zone, portable sign support systems accepted under NCHRP Report No. 350 were analyzed to predict their safety peformance according to the TL-3 MASH evaluation criteria. An analysis was conducted to determine which hardware parameters of sign support systems would likely contribute to the safety performance with MASH. The acuracy of the method was evaluated through full-scale crash testing. Four full-scale crash tests were conducted with a pickup truck. Two tall-mounted, sign support systems with aluminum sign panels failed the MASH criteria due to windshield penetration. One low-mounted system with a vinyl, roll-up sign panel failed the MASH criteria due to windshield and floorboard penetration. Another low-mounted system with an aluminum sign panel successfully met the MASH criteria. Four full-scale crash tests were conducted with a small passenger car. The low-mounted tripod system with an aluminum sign panel failed the MASH criteria due to windshield penetration. One low-mounted system with aluminum sign panel failed the MASH criteria due to excessive windshield deformation, and another similar system passed the MASH criteria. The low-mounted system with a vinyl, roll-up sign panel successfully met the MASH criteria. Hardware parameters of work-zone sign support systems that were determined to be important for failure with MASH include sign panel material, the height to the top of the mast, the presence of flags, sign-locking mechanism, base layout and system orientation. Flowcharts were provided to assist manufacturers when designing new sign support systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold In-Place Recycling (CIR) has been used widely in rehabilitating the rural highways because it improves a long-term pavement performance. A CIR layer is normally covered by a hot mix asphalt (HMA) overlay in order to protect it from water ingress and traffic abrasion and obtain the required pavement structure and texture. Curing is the term currently used for the period of time that a CIR layer should remain exposed to drying conditions before an HMA overlay is placed. The industry standard for curing time is 10 days to 14 days or a maximum moisture content of 1.5 percent, which appear to be very conservative. When the exposed CIR layer is required to carry traffic for many weeks before the wearing surface is placed, it increases the risk of a premature failure in both CIR layer and overlay. This study was performed to explore technically sound ways to identify minimum in-place CIR properties necessary to permit placement of the HMA overlay. To represent the curing process of CIR pavement in the field construction, three different laboratory curing procedures were examined: 1) uncovered, 2) semi-covered and 3) covered specimens. The indirect tensile strength of specimens in all three curing conditions did not increase during an early stage of curing but increased during a later stage of curing usually when the moisture content falls below 1.5%. Dynamic modulus and flow number increased as curing time increased and moisture contents decreased. For the same curing time, CIR-foam specimens exhibited the higher tensile strength and less moisture content than CIR-emulsion. The laboratory test results concluded that the method of curing temperature and length of the curing period significantly affect the properties of the CIR mixtures. The moisture loss index was developed to predict the moisture condition in the field and, in the future, this index be calibrated with the measurements of temperature and moisture of a CIR layer in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value of providing paved shoulders adjacent to many higher volume roadways has been accepted in many states across the country. Iowa’s paved shoulder policy is considerably more conservative than neighboring states, particularly on rural four-lane and high-volume two-lane highways. The objectives of this research are to examine current design criteria for shoulders employed in Iowa and surrounding states, compare benefits and costs of alternative surface types and widths, and make recommendations based on this analysis for consideration in future design policies for primary highway in Iowa. The report finds that many safety and maintenance benefits would result from enhancing Iowa’s paved shoulder and rumble strip design practices for freeways, expressways, and Super 2 highway corridors. The benefits of paved shoulders include reduced numbers of certain crashes, higher capacity potentials, reduced maintenance, enhanced opportunities for other users such as bicyclists, and even possible increased longevity of pavements. Alternative paved shoulder policies and programming strategies are also offered, with detailed assessments of the benefits, costs, and budget impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from the Iowa Medicaid congestive heart failure population disease management demonstration confirm that a population and technology based remote monitoring platform can greatly reduce the need for costly acute care services by involving patients in their care, improving care effectiveness and promoting healthy behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The State of Iowa has too many roads. Although ranking thirty-fourth in population, twenty-fifth in area, and twentieth in motor vehicle registration, it ranks seventh in the nation in miles of rural roads. In 1920 when Iowa's rural population was 1,528,000, there were 97,440 miles of secondary roads. In 1960 with rural population down 56 percent to 662,000, there were 91,000 miles of secondary roads--a 7 percent decrease. The question has been asked: "Who are these 'service roads' serving?" This excess mileage tends to dissipate road funds at a critical time of increasing public demand for better and safer roads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.