2 resultados para FGGE-Equator ´79 - First GARP Global Experiment
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels, June 2011
Resumo:
This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.
Resumo:
Sufficient evidence was not discovered in this brief search to alter the general opinion that the Serviceability (Present Serviceability Index-PSI) - Performance Concepts developed by the AASHO Road Test provides the optimum engineering basis for pavement management. Use of these concepts in Iowa has the additional advantage in that we have a reasonable quantity of historical data over a period of time on the change in pavement condition as measured by PSI's. Some additional benefits would be the ability to better assess our needs with respect to those being recommended to Congress by AASHTO Committees. These concepts have been the basis used for developing policies on dimensions and weight of vehicles and highway needs which the AASHTO Transport Committees have recommended to the United States House Committee on Ways and Means. The first recommendation based on these concepts was made in the mid 1960's. Iowa's participation in the evaluation for this recommendation was under the direction of our present Director of Transportation, Mr. Raymond Kassel. PSI Indexes had to be derived from subjective surface ratings at that time. The most recent recommendation to Congress was made in November of 1977. Based on the rationale expressed above, a pilot study of the major part of the rural interstate system was conducted. The Objective of the study was to measure pavement performance through the use of the Present Serviceability Index (PSI) - Pavement Performance concepts as developed by the AASHO Road Test and to explore the usefulness of this type of data as a pavement management tool. Projects in the vicinity of the major urban centers were not included in this study due to the extra time that would be required to isolate accurate traffic data in these areas. Projects consisting of asphalt surface courses on crushed stone base sections were not included.