38 resultados para Evaluation of different sources of carbohydrates
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Reliable estimates of heavy-truck volumes are important in a number of transportation applications. Estimates of truck volumes are necessary for pavement design and pavement management. Truck volumes are important in traffic safety. The number of trucks on the road also influences roadway capacity and traffic operations. Additionally, heavy vehicles pollute at higher rates than passenger vehicles. Consequently, reliable estimates of heavy-truck vehicle miles traveled (VMT) are important in creating accurate inventories of on-road emissions. This research evaluated three different methods to calculate heavy-truck annual average daily traffic (AADT) which can subsequently be used to estimate vehicle miles traveled (VMT). Traffic data from continuous count stations provided by the Iowa DOT were used to estimate AADT for two different truck groups (single-unit and multi-unit) using the three methods. The first method developed monthly and daily expansion factors for each truck group. The second and third methods created general expansion factors for all vehicles. Accuracy of the three methods was compared using n-fold cross-validation. In n-fold cross-validation, data are split into n partitions, and data from the nth partition are used to validate the remaining data. A comparison of the accuracy of the three methods was made using the estimates of prediction error obtained from cross-validation. The prediction error was determined by averaging the squared error between the estimated AADT and the actual AADT. Overall, the prediction error was the lowest for the method that developed expansion factors separately for the different truck groups for both single- and multi-unit trucks. This indicates that use of expansion factors specific to heavy trucks results in better estimates of AADT, and, subsequently, VMT, than using aggregate expansion factors and applying a percentage of trucks. Monthly, daily, and weekly traffic patterns were also evaluated. Significant variation exists in the temporal and seasonal patterns of heavy trucks as compared to passenger vehicles. This suggests that the use of aggregate expansion factors fails to adequately describe truck travel patterns.
Resumo:
With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be because at high replacement levels, SCM mixtures can take longer to set and to develop their properties: neither of these factors is taken into account in the standard laboratory finishing and curing procedures. As a result, these variables were studied as well as a modified scaling test, based on the Quebec BNQ scaling test that had shown promise in other research. The experimental research focused on the evaluation of three scaling resistance tests, including the ASTM C672 test with normal curing as well as an accelerated curing regime used by VDOT for ASTM C1202 rapid chloride permeability tests and now included as an option in ASTM C1202. As well, several variations on the proposed draft ASTM WK9367 deicer scaling resistance test, based on the Quebec Ministry of Transportation BNQ test method, were evaluated for concretes containing varying amounts of slag cement. A total of 16 concrete mixtures were studied using both high alkali cement and low alkali cement, Grade 100 slag and Grade 120 slag with 0, 20, 35 and 50 percent slag replacement by mass of total cementing materials. Vinsol resin was used as the primary air entrainer and Micro Air® was used in two replicate mixes for comparison. Based on the results of this study, a draft alternative test method to ASTM C762 is proposed.
Resumo:
In searching for simple and reliable test methods to evaluate the quality of Iowa portland cement concrete (PCC) pavements, the Duggan test was conducted for concretes made of twenty-six types of cements in this laboratory research. The influence of some factors, such as chemical composition and type of cements, use of air-entraining agent and water reducer, and water to cement ratio, on the result of the Duggan test was examined. It was found that the expansion increases with increasing values of potassium alkali (K2O) and sulfur trioxide (SO3) in cements. It was also found that the Type I cements generally produce higher expansion than the Type II, IP and IS cements. Since it is difficult to identify the major mechanism leading to the expansion observed in the Duggan test, more studies are certainly needed before it can be used as a reliable test method for evaluating the service life of concrete pavement.
Resumo:
The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. When Class C ashes were used they were substituted on the basis of 1 pound of ash added for each pound of cement deleted. When Class F was used it was substituted on the basis of 1.25 pounds of ash added for each pound of cement deleted. Compressive strengths of the water reduced mixes, with and without fly ash, were determined at 7, 28, and 56 days of age. In every case except one the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. An excellent correlation existed between the C3WR and C6WR mixes both with and without fly ash substitutions. The freeze-thaw durability of the concrete studied was not affected by presence or absence of fly ash. The data gathered suggests that the present Class C water reduced concrete paving mixes can be modified to allow the substitution of 15% of the cement with an approved fly ash.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
Fly ash was used in this evaluation study to replace 30, 50 and 70 percent of the 400 1bs. of cement currently used in each cu. yd. of portland cement econocrete base paving mix. Two Class "c" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "c" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths with and without fly ash were determined at 7, 28 and 56 days of age. In most cases, strengths were adequate. The freeze/thaw durability of the econocrete mixes studied was not adversely affected by the presence of fly ash. The tests along with erodibility and absorption tests have demonstrated the feasibility of producing econocrete with satisfactory mechanical properties even when relatively low quality and/or locally available aggregate is being used at no sacrifice to strength and/or durability.
Resumo:
Roadside cross-drainage culverts have been found to impact vehicle accident injury levels. Designers have commonly used three safety treatments to protect errant drivers from culvert accidents. These treatments have included: culvert extension, guardrail installation and grating. In order to define which safety treatment is the most appropriate, benefit-cost analysis has used accident cost reduction to estimate societal gains earned by using any safety treatment. The purpose of this study was to estimate accident costs for a wide range of roadway and roadside characteristics so that designers can calculate benefit/cost ratios for culvert safety treatment options under any particular scenario. This study began with conducting a parametric study in order to find variables which have significant impact on accident cost changes. The study proceeded with highway scenario modeling which included scenarios with different values for combinations of roadway and roadside variables. These variables were chosen based upon findings from the parametric study and their values were assigned based upon highway classification. This study shows that the use of different culvert safety treatments should be flexible to roadway and roadside characteristics. It also shows that culvert extension and grating were the safety treatments found to produce the lowest accident costs for all highway scenarios modeled. Therefore, it is believed that the expanded adoption of culvert extension and culvert grates can improve overall highway safety.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBISB) system for use with accelerated construction. A typical PMBISB is comprised of five to six precast MBISB panels and is used on low volume roads, on short spans, and is installed and fabricated by county forces. Precast abutment caps and a precast abutment backwall were also developed by BHC for use with the PMBISB. The objective of the research was to gain knowledge of the global behavior of the bridge system in the field, to quantify the strength and behavior of the individual precast components, and to develop a more time efficient panel-to-panel field connection. Precast components tested in the laboratory include two precast abutment caps, three different types of deck panel connections, and a precast abutment backwall. The abutment caps and backwall were tested for behavior and strength. The three panel-to-panel connections were tested in the lab for strength and were evaluated based on cost and constructability. Two PMBISB were tested in the field to determine stresses, lateral distribution characteristics, and overall global behavior.
Resumo:
Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.
Resumo:
Epoxy coatings have been used on the embedded reinforcing bars of bridge decks since the mid-1970s to mitigate deterioration caused by chloride-induced corrosion. The use of chloride-based deicers became common in the early 1960s and caused corrosion of conventional uncoated bars in bridge decks within 5 to 10 years of commencement of deicer applications. In response to this rapid deterioration, the National Bureau of Standards researched coatings to protect the reinforcement (National Bureau of Standards, 1975), resulting in the development of epoxy-coated reinforcing bars, which were used in bridge decks beginning in 1973. While corrosion-related deterioration has been prevalent on bridge decks with uncoated reinforcing bars in northern climates where the use of deicing salts is common, bridge decks constructed after 1973 with epoxy-coated reinforcing have shown good corrosion resistance with only limited exceptions. On the whole, previous laboratory and field studies regarding the performance of epoxy-coated reinforcing bars are very promising; however, some laboratory and field studies have yielded differing results. In recent years, maintenance personnel for the Iowa Department of Transportation (Iowa DOT) have reportedly performed patch repairs to some bridge decks reinforced with epoxy-coated bars. At one such bridge, the southbound US 65 bridge (Bridge No. 7788.5L065) over the Union Pacific Railroad near Bondurant in Polk County, Iowa, deck repairs were performed by Iowa DOT maintenance personnel in the Spring of 2010, based on our communications regarding this topic with Mr. Gordon Port of the Iowa DOT. These repairs were observed by engineers from the Iowa DOT Office of Bridges and Structures, who reported that significant corrosion was found at a number of epoxy-coated reinforcing bars uncovered during this patch work. These repairs were reportedly performed at spalls and delaminated areas corresponding to cracks over transverse reinforcing bars, and involved careful removal of the concrete from over the bars. Figures 1 through 4 contain photographs provided by Iowa DOT personnel showing the removal process (Figure 1), the conditions encountered (Figures 2 and 3), and close-up views of the corroded reinforcing (Figure 4). As a result of these observations, the Iowa Department of Transportation has requested this study to gain further understanding of the long-term performance of bridge decks reinforced with epoxy-coated bars. The two main objectives of this study are to determine the long-term effectiveness of the epoxy coatings and to determine the potential causes for the deterioration at locations where corrosion has occurred. Wiss, Janney, Elstner Associates, Inc. (WJE) and the Iowa DOT identified eight different bridge decks across Iowa for this study that were constructed using epoxy-coated reinforcing bars. A field investigation consisting of visual inspections, a delamination survey, a concrete cover survey, electrical testing for susceptibility to corrosion, and concrete sampling was conducted within a survey area deemed to be representative of the condition of each bridge deck. Laboratory testing, including chloride ion content testing, characterization of the extracted bars, petrographic examination of the concrete, and carbonation testing, was conducted on the core samples taken from each bridge deck.
Resumo:
This project consisted of slipforming a 4-inch thick econocrete subbase on a 6-mile section of US 63. The project location extends south from one mile south of Denver, Iowa to Black Hawk County Road C-66 and consisted of the reconstruction and new construction of a divided four-lane facility. The econocrete was placed 27.3 feet wide in a single pass. Fly ash was used in this field study to replace 30, 45 and 60 percent of the portland cement in three portland cement econocrete base paving mixes. The three mixes contained 300, 350 and 400 pounds of cementitious material per cubic yard. Two Class "C" ashes from Iowa approved sources were used. The ash was substituted on the basis of one pound of ash for each pound of cement removed. The work was done October 6-29, 1987 and May 25-June 9, 1988. The twelve subbase mixes were placed in sections 2500 to 3000 feet in length on both the north and southbound roadways. Compressive strengths of all mixes were determined at 3 and 28 days of age. Flexural strengths of all mixes were determined at 7 and 14 days. In all cases strengths were adequate. The freeze/thaw durability of the econocrete mixes used was reduced by increased fly ash levels but remained above acceptable limits. The test results demonstrate the feasibility of producing econocrete with satisfactory properties even using fly ash at substitution rates up to 45 percent.
Resumo:
Many reports have been written concerning investigations of concrete sealants. The primary concern of most investigators is the protection of bridge decks from de-icing chemicals which cause surface scaling and, when allowed to permeate to reinforcing steel, result in deep spalling and general concrete deterioration. The problem of protecting abutments and pier tops from salt solutions entails a significantly different approach than the problem of protecting bridge decks. The epoxy resins become eligible as a protective material since one need not be concerned with slipperiness or its abrasive characteristics. Protection with linseed oil at regular intervals would prove bothersome because of the inaccessibility of pier tops after the deck is placed. The primary purpose of this investigation was to evaluate various commercial products in terms of their ability to prevent concrete scaling of bridge abutments and pier tops which are subject to salt water deterioration.