26 resultados para End of degree project
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The 2008 Biobased Industry Outlook Conference was held September 7-10 on the Iowa State University campus. Over 750 people attended the plenary sessions on the morning of September 8th; 580 people registered for the full conference. Sponsorships: $92,500 in sponsorships in addition to the IPF was secured for the conference (considered “match” to the IPF grant). Including the $11,250 IPF sponsorship ($12,500 minus overhead charges of $1,250), the total amount contributed for conference sponsorships was $103,750. A list of sponsors and the amount of sponsorship is listed in Appendix A. Sponsorship funds received from the Iowa Power Fund were used for supplies and materials. Please see Appendix B which documents the transfer of IPF grant funds internally at ISU and their use.
Resumo:
A short course designed for adult study groups Prepared by the Curriculum Task Force of the End-of-Life Care Coalition of Central Iowa
Resumo:
Agreed upon procedures report for evaluating compliance with provisions of IowaCare (Project No 11-W-00189/7) within the Iowa Department of Human Services for the year ended June 30, 2006
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. S~milabr ehavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.
Resumo:
This report describes the continuation of the development of performance measures for the Iowa Department of Transportation (DOT) Offices of Construction. Those offices are responsible for administering transportation construction projects for the Iowa DOT. Researchers worked closely with the Benchmark Steering Team which was formed during Phase I of this project and is composed of representatives of the Offices of Construction. The research team conducted a second survey of Offices of Construction personnel, interviewed numerous members of the Offices and continued to work to improve the eight key processes identified during Phase I of this research. The eight key processes include Inspection of Work, Resolution of Technical Issues, Documentation of Work Progress and Pay Quantities, Employee Training and Development, Continuous Feedback for Improved Contract Documents, Provide Safe Traffic Control, External/Public Communication, and Providing Pre-Letting Information. Three to four measurements were specified for each key process. Many of these measurements required opinion surveys of employees, contractors, and others. During Phase II, researchers concentrated on conducting surveys, interviewing respondents to improve future surveys, and facilitating Benchmark Steering Team monthly meetings. Much effort was placed on using the information collected during the first year's research to improve the effectiveness and efficiency of the Offices of Construction. The results from Process Improvement Teams that studied Traffic Control and Resolution of Technical Issues were used to improve operations.
Resumo:
This is the final Report to the Iowa DOT Offices of Construction and the Highway Division for the calendar year 1999 research project entitled - Continuation of Benchmarking Project: Phase IV. This project continues efforts started in 1995 with the development of a performance measurement system. The performance measurements were used to identify areas that required improvement and process improvement teams (PITs) were launched to make recommendations for improvement. This report provides a brief historical background, documents Benchmark Steering Team Activities, describes measurement activities including the employee survey and collection of non-survey data. Then a retrospective of past PIT activities is given, which sets the stage for the substantial increase in PIT activity that occurred during the winter of 1998/9. Finally, the report closes with suggestions for future directions in Benchmarking Activity.
Resumo:
DESCRIPTION OF PROPOSED ACTION This Environmental Assessment (EA) has been prepared in compliance with the requirements of the National Environmental Policy Act of 1969 (NEPA). This EA informs the public and interested agencies of the proposed action and alternatives to the proposed action in order to gather feedback on the improvements under consideration. Proposed Action The Iowa Department of Transportation (Iowa DOT) and the Federal Highway Administration (FHWA) are evaluating potential alternatives to improve IA 122 in the City of Mason City. IA 122/Business US 18 is a primary east-west travel route through the City that transitions from a 4- lane undivided roadway, to 2-lane one-way pairs, then back to a 4-lane undivided roadway (Figure 1-1). The Iowa DOT proposes to flatten the tight reverse curves on the east end of the project. The one-way pairs will be narrowed by eliminating on-street parking along the corridor to more clearly define travel lanes. This will serve to calm traffic flows and reduce crashes along the highway. Additionally, improvements to intersections as well as consolidating or removing access points to improve traffic operations are proposed within the project corridor. A new access road for the Mason City Fire Department on the west end of the project will allow emergency trucks better access to travel south and east. Study Area The primary area of investigation for the Project is generally bounded by IA 122 through Mason City, known locally as 5th and 6th Street Southwest from South Monroe Avenue to South Carolina Avenue. US 65, known locally as Federal Avenue, bisects the study area. At this intersection of US 65 and Iowa 122, the 5th and 6th Street SW changes to 5th and 6th St SE. For the purposes of this discussion, this area will be referred to collectively as the IA 122 corridor. The Study Area boundaries were established to allow the development of a wide range of alternatives that could address the purpose and need for the project. The Study Area is larger than the area proposed for construction activities for the Project. However, some impacts may extend beyond the Study Area; where this occurs, it will be noted and addressed in the Environmental Analysis Section (Section 5). Figure 1-1 outlines the Study Area of the proposed action.
Resumo:
The proposed action consists of upgrading Mississippi Drive (Iowa Highway 92) through downtown Muscatine, Iowa. The Mississippi Drive Corridor Project begins south of the Main Street/Grandview Avenue intersection, continuing to the East 2nd Street/Norbert F. Beckey Bridge intersection, which marks the end of the project. It passes through a mix of commercial, residential, Central Business District and industrial land uses. The total length of the project is approximately 1.6 miles, including 19 intersections (6 with traffic signals). Refer to the vicinity map on Figure 1. The current roadway is a 3- to 4-lane, urban facility with both divided and undivided medians. The roadway, ranging from 40 to 64 feet wide, is considered difficult to cross for pedestrians, especially for small children or elderly. The width of this roadway is being considered to be narrowed to improve the accessibility to the downtown from the Mississippi River riverfront area by pedestrians. This project also includes accommodations for bicycles and pedestrians and measures to reduce flooding on the roadway.
Resumo:
Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and contractors with substantial advantages over mixtures containing only portland cement. However, these advances in concrete technology and engineering have not always been adequately captured in specifications for concrete. Users need specific guidance to assist them in defining the performance requirements for a concrete application and the selection of optimal proportions of the cementitious materials needed to produce the required durable concrete. The fact that blended cements are currently available in many regions increases options for mixtures and thus can complicate the selection process. Both Portland and blended cements have already been optimized by the manufacturer to provide specific properties (such as setting time, shrinkage, and strength gain). The addition of SCMs (as binary, ternary, or even more complex mixtures) can alter these properties, and therefore has the potential to impact the overall performance and applications of concrete. This report is the final of a series of publications describing a project aimed at addressing effective use of ternary systems. The work was conducted in several stages and individual reports have been published at the end of each stage.
Resumo:
Reconstruction of bridge approach slabs which have failed due to a loss of support from embankment fill consolidation or erosion can be particularly challenging in urban areas where lane closures must be minimized. Precast prestressed concrete pavement is a potential solution for rapid bridge approach slab reconstruction which uses prefabricated pavement panels that can be installed and opened to traffic quickly. To evaluate this solution, the Iowa Department of Transportation constructed a precast prestressed approach slab demonstration project on Highway 60 near Sheldon, Iowa in August/September 2006. Two approach slabs at either end of a new bridge were constructed using precast prestressed concrete panels. This report documents the successful development, design, and construction of the precast prestressed concrete bridge approach slabs on Highway 60. The report discusses the challenges and issues that were faced during the project and presents recommendations for future implementation of this innovative construction technique.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
The number of Hispanic workers in the U.S. construction industry has been steadily increasing, and language and cultural barriers have sometimes arisen on the jobsite. Due in part to these barriers, the number of fatalities among Hispanics at construction sites in 2001 jumped 24%, while construction fatalities overall dropped 3%. This study, which constitutes Phase III of the Hispanic Workforce Research Project, addresses these language and cultural barriers by investigating the most effective way to deliver training material developed in Phases I and II to Hispanic workers, American supervisors, and department of transportation (DOT) inspectors. The research methodology consisted of assessing the needs and interests of potential and current course participants in terms of exploring innovative ways to deliver the training. The training courses were then adapted and delivered to fit the specific needs of each audience. During Phase III of this project, the research team delivered the courses described in the Phase I and II reports to eight highway construction companies and two DOT groups. The courses developed in Phases I and II consist of four construction-focused language training courses that can be part of an effective training program to facilitate integration among U.S. and Hispanic workers, increase productivity and motivation at the jobsite, and decrease the existing high mortality rate for Hispanic workers. Moreover, the research team developed a course for the construction season called Toolbox Integration Course for Hispanic workers and American supervisors (TICHA), which consists of nine 45-minute modules delivered to one construction company over 11 weeks in the summer of 2005.