3 resultados para Embedded system

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bridge deck and substructure deterioration due to the corrosive effects of deicing chemicals on reinforcing steel is a problem facing many transportation agencies. The main concern is protection of older bridges with uncoated reinforcing steel. Many different methods have been tried over the past years to repair bridge decks. The Iowa system of bridge deck rehabilitation has proven to be very effective. It consists of scarifying the deck surface, removing any deteriorated concrete, and overlaying with low slump dense concrete. Another rehabilitation method that has emerged is cathodic protection. It has been used for many years in the protection of underground pipelines and in 1973 was first installed on a bridge deck. Cathodic protection works by applying an external source of direct current to the embedded reinforcing steel, thereby changing the electrochemical process of corrosion. The corroding steel, which is anodic, is protected by changing it to a cathodic state. The technology involved in cathodic protection as applied to bridge decks has improved over the last 12 years. One company marketing new technology in cathodic protection systems is Raychem Corporation of Menlo Park, California. Their system utilizes a Ferex anode mesh that distributes the impressed direct current over the deck surface. Ferex mesh was selected because it seemed readily adaptable to the Iowa system of bridge deck rehabilitation. The bridge deck would be scarified, deteriorated concrete removed, Ferex anode mesh installed, and overlaid with low slump dense concrete. The Federal Highway Administration (FHWA) promotes cathodic protection under Demonstration Project No. 34, "Cathodic Protection for Reinforced Concrete Bridge Decks."