23 resultados para Efficiency Measurement
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.
Resumo:
Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.
Resumo:
Public Works is pleased to present the following Iowa Efficiency Review Report to Governor Chet Culver and Lieutenant Governor Patty Judge. This report is the product of a collaboration between our consulting team and very dedicated Iowa state employees who worked with us to share ideas and cost‐saving proposals under very difficult circumstances caused by the national financial crisis that is affecting state budgets throughout the country. For example, during the course of this review, Iowa departments were also asked to develop across‐the‐board cuts to achieve immediate reductions in state spending. It is a credit to Iowa state government that departmental staff continued to work on this Efficiency Review Report despite these challenges of also having to develop across‐the‐board budget cuts to achieve a balanced budget. We hope that these ideas will set the stage for further future budget improvements from achieving efficiencies, eliminating outdated practices, increasing the use of information technology solutions and finding new sources of non‐tax funding. The Efficiency Review Team faced a second challenge. Statewide Efficiency Reviews usually take from nine to 12 months to complete. In Iowa, we worked with dedicated department staff to complete our work in less than 4 months. The Governor challenged all of us to work intensely and to give him our best thinking on efficiency proposals so that he could act as quickly as possible to position state government for success over the next several years.
Resumo:
The Legislative Council created the Energy Efficiency Plans and Programs Study Committee for the 2008 Legislative Interim pursuant to the passage of S.F. 2386 during the 2008 Legislative Session, which provided, in Section 8: The Legislative Council is requested to establish an interim study committee to examine the existence and effectiveness of energy efficiency plans and programs implemented by gas and electric public utilities, with an emphasis on results achieved by current plans and programs from the demand, or customer, perspective, and to make recommendations for additional requirements applicable to energy efficiency plans and programs that would improve such results. In conducting the study and developing recommendations, the Committee shall consider testimony from the Iowa Utilities Board, rate and nonrate-regulated gas and electric utilities, the Consumer Advocate, state agencies involved with energy efficiency program administration, environmental groups and associations, and consumers.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Resumo:
In the November 2011 report issued by the Governor’s Transportation 2020 Citizen Advisory Commission (CAC), the commission recommended the Iowa Department of Transportation (DOT), at least annually, convene meetings with the cities and counties to review the operation, maintenance and improvement of Iowa’s public roadway system to identify ways to jointly increase efficiency. In response to this recommendation, Gov. Branstad directed the Iowa DOT to begin this effort immediately with a target of identifying $50 million of efficiency savings that can be captured from the $1.2 billion of Road Use Tax Funds (RUTF) provided to the Iowa DOT, cities and counties to administer, maintain and improve the public roadway system. This would build upon past joint and individual actions that have reduced administrative costs and resulted in increased funding for system improvements. Efficiency actions should be quantified, measured and reported to the public on a regular basis. Beyond the discussion of identifying funding solutions to our road and bridge needs, it is critical that all jurisdictions that own, maintain and improve the nation’s road and bridge systems demonstrate to the public these funds are utilized in the most efficient and effective manner. This requires continual innovation in all aspects of transportation planning, design, construction and maintenance - done in a transparent manner to clearly demonstrate to the public how their funds are being utilized. The Iowa DOT has identified 13 efficiency measures separated into two distinct categories – Program Efficiencies and Partnership Efficiencies. The total value of the efficiency measures is $50 million. Many of the efficiency items will need input, refinement and partnership from cities, counties, other local jurisdictions, and stakeholder interest groups. The Iowa DOT has begun meetings with many of these groups to help identify potential efficiency measures and strategies for moving forward. These partnerships and discussions will continue through implementation of the efficiency measures. Dependent on the measures identified, additional action may be required by the legislature, Iowa Transportation Commission, and/or other bodies to implement the action. In addition, a formal process will be developed to quantify, measure and report the results of actions taken on a regular basis.
Resumo:
Develop, in conjunction with the regional planning affiliations and metropolitan planning organizations and other stakeholder groups, a process to exchange STP federal funds for Primary Highway System funds for the purpose of reducing the number of small projects that have to meet onerous federal requirements. In order to implement this recommendation, legislative action is required to eliminate the restriction on using Primary Road Fund revenue on local jurisdiction roadways in exchange for a portion of their federal STP funding. This past session, Iowa DOT worked with legislators to introduce a bill in both the House and the Senate to eliminate this Code restriction. Bills were discussed at the subcommittee level in both the House and Senate but did not proceed because of the need to have further discussions with impacted parties. Prior to next session, discussions will occur amongst all impacted parties to reach consensus on how this recommendation could be implemented. With that consensus in place prior to next session, it is anticipated that the bills can be reintroduced next session.
Resumo:
Senate File 2314, 84th General Assembly, states the Iowa Department of Transportation shall submit quarterly reports regarding the implementation of efficiency measures identified in the “Road Use Tax Fund Efficiency Report,” January 2012. This report shall provide details of activities undertaken in the previous quarter relating to one-time and long-term program efficiencies and partnership efficiencies. Issues covered include savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
Senate File 2314, 84th General Assembly, states the Iowa Department of Transportation shall submit quarterly reports regarding the implementation of efficiency measures identified in the "Road Use Tax Fund Efficiency Report," January 2012. This report shall provide details of activities undertaken in the previous quarter relating to one-time and long-term program efficiencies and partnership efficiencies. Issues covered include savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
Senate File 2314, 84th General Assembly, states the Iowa Department of Transportation shall submit quarterly reports regarding the implementation of efficiency measures identified in the "Road Use Tax Fund Efficiency Report," January 2012. This report shall provide details of activities undertaken in the previous quarter relating to one-time and long-term program efficiencies and partnership efficiencies. Issues covered include savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
Senate File 2314, 84th General Assembly, states the Iowa Department of Transportation shall submit quarterly reports regarding the implementation of efficiency measures identified in the "Road Use Tax Fund Efficiency Report," January 2012. This report shall provide details of activities undertaken in the previous quarter relating to one-time and long-term program efficiencies and partnership efficiencies. Issues covered include savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.