4 resultados para EMBEDDED GENERATION
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
We review some of the most significant issues and results on the economic effects of genetically modified (GM) product innovation, with emphasis on the question of GM labeling and the need for costly segregation and identity preservation activities. The analysis is organized around an explicit model that can accommodate the features of both first-generation and second-generation GM products. The model accounts for the proprietary nature of GM innovations and for the critical role of consumer preferences vis-à-vis GM products, as well as for the impacts of segregation and identity preservation and the effects of a mandatory GM labeling regulation. We also investigate briefly a novel question in this setting, the choice of “research direction”when both cost-reducing and quality-enhancing GM innovations are feasible.
Resumo:
This paper describes a maximum likelihood method using historical weather data to estimate a parametric model of daily precipitation and maximum and minimum air temperatures. Parameter estimates are reported for Brookings, SD, and Boone, IA, to illustrate the procedure. The use of this parametric model to generate stochastic time series of daily weather is then summarized. A soil temperature model is described that determines daily average, maximum, and minimum soil temperatures based on air temperatures and precipitation, following a lagged process due to soil heat storage and other factors.
Resumo:
Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.
Resumo:
The objective was to evaluate the usefulness, accuracy, precision, and reproducibility of the second generation CMD for PC concrete under production conditions.