12 resultados para Drop
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A vehicle may leave its travel lane for a number of reasons, such as driver error, poor surface conditions, or avoidance of a collision with another vehicle in the travel lane. When a vehicle leaves the travel lane, pavement edge drop-off poses a potential safety hazard because significant vertical differences between surfaces can affect vehicle stability and reduce a driver’s ability to handle the vehicle. Numerous controlled studies have tested driver response to encountering drop-offs under various conditions, including different speeds, vehicle types, drop-off height and shape, and tire scrubbing versus non-scrubbing conditions. The studies evaluated the drivers’ ability to return to and recover within their own travel lane after leaving the roadway and encountering a drop-off. Many of these studies, however, have used professional drivers as test subjects, so results may not always apply to the population of average drivers. Furthermore, test subjects are always briefed on what generally is to be expected and how to respond; thus, the sense of surprise that a truly naïve driver may experience upon realizing that one or two of his or her tires have just dropped off the edge of the pavement, is very likely diminished. Additionally, the studies were carried out under controlled conditions. The actual impact of pavement edge drop-off on drivers’ ability to recover safely once they leave the roadway, however, is not well understood under actual driving conditions. Additionally, little information is available that quantifies the number or severity of crashes that occur where pavement edge drop-off may have been a contributing factor. Without sufficient information about the frequency of edge drop-off-related crashes, agencies are not fully able to measure the economic benefits of investment decisions, evaluate the effectiveness of different treatments to mitigate edge drop-off, or focus maintenance resources. To address these issues, this report details research to quantify the contribution of pavement edge drop-off to crash frequency and severity. Additionally, the study evaluated federal and state guidance in sampling and addressing pavement edge drop-off and quantified the extent of pavement edge drop-off in two states. This study focused on rural two-lane paved roadways with unpaved shoulders, since they are often high speed facilities (55+ mph), have varying levels of maintenance, and are likely to be characterized by adverse roadway conditions such as narrow lanes or no shoulders.
Resumo:
Pavement and shoulder edge drop-offs commonly occur in work zones as the result of overlays, pavement replacement, or shoulder construction. The depth of these elevation differentials can vary from approximately one inch when a flexible pavement overlay is applied to several feet where major reconstruction is undertaken. The potential hazards associated with pavement edge differentials depend on several factors including depth of the drop-off, shape of the pavement edge, distance from traveled way, vehicle speed, traffic mix, volume, and other factors. This research was undertaken to review current practices in other states for temporary traffic control strategies addressing lane edge differentials and to analyze crash data and resultant litigation related to edge drop-offs. An objective was to identify cost-effective practices that would minimize the potential for and impacts of edge drop crashes in work zones. Considerable variation in addressing temporary traffic control in work zones with edge drop-off exposure was found among the states surveyed. Crashes related to pavement edge drop-offs in work zones do not commonly occur in the state of Iowa, but some have resulted in significant tort claims and settlements. The use of benefit/cost analysis may provide guidance in selection of an appropriate mitigation and protection of edge drop-off conditions. Development and adoption of guidelines for design of appropriate traffic control for work zones that include edge drop-off exposure, particularly identifying effective use of temporary barrier rail, may be beneficial in Iowa.
Resumo:
Critics of the U.S. proposal to the World Trade Organization (WTO) made in October 2005 are correct when they argue that adoption of the proposal would significantly reduce available support under the current farm program structure. Using historical prices and yields from 1980 to 2004, we estimate that loan rates would have to drop by 9 percent and target prices would have to drop by 10 percent in order to meet the proposed aggregate Amber Box and Blue Box limits. While this finding should cheer those who think that reform of U.S. farm programs is long overdue, it alarms those who want to maintain a strong safety net for U.S. agriculture. The dilemma of needing to reform farm programs while maintaining a strong safety net could be resolved by redesigning programs so that they target revenue rather than price. Building on a base of 70 percent Green Box income insurance, a program that provides a crop-specific revenue guarantee equal to 98 percent of the product of the current effective target price and expected county yield would fit into the proposed aggregate Amber and Blue Box limits. Payments would be triggered whenever the product of the season-average price and county average yield fell below this 98 percent revenue guarantee. Adding the proposed crop-specific constraints lowers the coverage level to 95 percent. Moving from programs that target price to ones that target revenue would eliminate the rationale for ad hoc disaster payments. Program payments would automatically arrive whenever significant crop losses or economic losses caused by low prices occurred. Also, much of the need for the complicated mechanism (the Standard Reinsurance Agreement) that transfers most risk of the U.S. crop insurance to the federal government would be eliminated because the federal government would directly assume the risk through farm programs. Changing the focus of federal farm programs from price targeting to revenue targeting would not be easy. Farmers have long relied on price supports and the knowledge that crop losses are often adequately covered by heavily subsidized crop insurance or by ad hoc disaster payments. Farmers and their leaders would only be willing to support a change to revenue targeting if they see that the current system is untenable in an era of tight federal budgets and WTO limits.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.
Resumo:
Granular shoulders are an important element of the transportation system and are constantly subjected to performance problems due to wind- and water-induced erosion, rutting, edge drop-off, and slope irregularities. Such problems can directly affect drivers’ safety and often require regular maintenance. The present research study was undertaken to investigate the factors contributing to these performance problems and to propose new ideas to design and maintain granular shoulders while keeping ownership costs low. This report includes observations made during a field reconnaissance study, findings from an effort to stabilize the granular and subgrade layer at six shoulder test sections, and the results of a laboratory box study where a shoulder section overlying a soft foundation layer was simulated. Based on the research described in this report, the following changes are proposed to the construction and maintenance methods for granular shoulders: • A minimum CBR value for the granular and subgrade layer should be selected to alleviate edge drop-off and rutting formation. • For those constructing new shoulder sections, the design charts provided in this report can be used as a rapid guide based on an allowable rut depth. The charts can also be used to predict the behavior of existing shoulders. • In the case of existing shoulder sections overlying soft foundations, the use of geogrid or fly ash stabilization proved to be an effective technique for mitigating shoulder rutting.
Resumo:
In the last issue of the Data Download, we discussed that overall, a 10% drop in LSI-R scores for our highest risk offenders was associated with a 6% reduction in recidivism. However, LSI-R score reductions for the lowest risk offenders don't substantially affect their already low recidivism rates. The issue contained charts that showed this held true for both probationers and parolees. The charts below show that change also matters for women offenders and African-American offenders.
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made.
Resumo:
Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.
Resumo:
The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.
Resumo:
Innovative Rail Ltd. of Cedar Rapids, Iowa produced a new rail/highway crossing gate arm that shows promise in two areas: a. Minimizing arm breakage, and b. Added target value to motorists. The new gate was demonstrated to the Chicago and North Western Transportation Company, and that railroad has requested its use at two crossings on an "experimental basis" to determine if its installation provides relief in those areas. On April 18, 1986, the Department observed a test of the material under field conditions with the Transportation Company. The gate received four mid-center strikes at 5 MPH by a company truck while in the lowered position, and showed no damage. In a fifth mid-center strike at 15 MPH, the gate was visibly damaged at the connection to its raising mechanism, but continued to function though at a 5-10 degree drop. Several pictures of the gate and its saddle mechanism are shown in Appendix A of this report. Innovative Rail established distributorships in the United States and Canada, and has since gone out of business.