8 resultados para Ditches.

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manual describes best roadway maintenance practices for Iowa's local roads and streets, from the center line to shoulders, ditches, and drainage, with chapters on public relations, bridge maintenance, and snow and ice control. Each chapter contains safety tips, information(as appropriate) on managing quality control, and a list of references for further information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DOT is in the process of replanting all the roadsides on state primary highways to native grasses and wildflowers. While the existing vegetation may look nice, it is not functioning as well as needed for roadside purposes such as erosion control, water infiltration or weed competition. The DOT currently spends nearly $3 million each year to clean ditches, remove silt, and spray and mow weeds. The DOT believes the native vegetation, once established, will provide sufficient benefits and reduced maintenance costs to warrant replacing the existing vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1975, Kossuth County had 492 miles of asphalt pavements, sixty percent of which were between l5 and 20 years old. Many of these roadways were in need of rehabilitation. Normally, asphaltic resurfacing would be the procedure for correcting the pavement deterioration. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt cement concrete paving. Kossuth County is one of those areas. The problem is typified by this project. Limestone aggregate to be incorporated into the asphalt resurfacing had to be hauled 53 miles from the quarry to the plant site. The cost of hauling good quality aggregate coupled with the increasing cost of asphalt cement encouraged Kossuth County to investigate the possibility of asphaltic pavement recycling. Another problem, possibly unique to Kossuth County, was the way the original roadways had been constructed. A good clay soil was present under 3 to 4 feet of poorer soil. In order to obtain this good clay soil for subbase construction, the roadway ditches were excavated 1 to 3 feet into the clay soil layer. The resultant roadway tops were several feet above the surrounding farm land and generally less than 26 feet wide. To bring the existing roadway up to current minimum design width, there were two choices: One was to widen the roadway by truck hauling soil and constructing new 4 to 6 foot shoulders. The cost of widening by this method averaged $36,000 per mile in 1975. The other choice was to remove the old pavement and widen the roadway by lowering the grade line. The desire to provide wider paved roadways gave Kossuth County the additional incentive needed to proceed with a pavement recycling project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kossuth County is located in North Central Iowa bordering on the State of Minnesota. It is the largest county in Iowa consisting of 28 congressional townships. The population of the county is 23,000 of which 11,000 people live in the rural area. There are 13 towns located in the county with the county seat, Algona, being the largest with a population of 6,100. Major industry of the area is grain farming with some beef and hog production. Naturally, where there is good grain farm land it follows that there is poor soil available for road construction and pavements. However, below the 3 to 4 feet of good farm land of Kossuth there is present a good grade of clay soil which does make an adequate base for surfacing when placed and compacted on top of the roadbed. As early as 1950, the then Kossuth County Engineer, H.M. Smith, embarked on a program of stage construction in building new grades and pavements. The goal of his program was primarily to conserve the county's rapidly dwindling supply of surfacing materials, and also, to realize the side effects of providing smooth and dustless roads for the public. Engineer Smith was fully aware of the poor soils that existed for road construction, but he also knew about the good clay that lay below the farm soil. Consequently, in his grading program he insisted that road ditches be dug deep enough to allow the good clay soil to be compacted on top of the roadbed. The presence of the compacted clay on top of the road resulted in a briding affect over the farm soil. The stage construction program satisfied the objectives of aggregate construction and dust control but did generate other problems which we are now trying to solve as economically as possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between Iowa’s roads and drainage developed when rural roads were originally constructed. The land parallel to roadways was excavated to create road embankments. The resulting ditches provided an outlet for shallow tiles to drain nearby fields for farming. Iowa’s climate and terrain are nearly ideal for farming, and more than 90 percent of the land suits the purpose. Much of the land, however, needs to be artificially drained to achieve maximum productivity. Most of this drainage has been accomplished with an extensive network of levees, open ditches, and underground tiles. The U.S. Census Bureau estimated that as early as 1920 approximately nine million acres of Iowa farm land had been artificially drained or needed to be. Couple this drainage system with Iowa’s extensive surface transportation system—approximately 100,000 miles of roads and streets, 90,000 on local systems— and potential for conflicts will naturally arise. This is particularly true with urban expansion resulting in residential and commercial development of rural land. This manual contains summaries of and references to the laws most relevant to drainage in Iowa. It also includes frequently asked questions about transportation agencies’ responsibilities related to drainage. Typical policies and agreement forms used by agencies to address drainage issues are illustrated and a glossary of common terms is included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver Lake is located in an 18,053-acre watershed. The watershed is intensively farmed with almost all of the wetlands being previously drained or degraded over the last 50 years. Silver Lake is listed on the State of Iowa’s impaired water bodies list due to sediment and high nutrient level. Silver Lake is also known be in the bottom 25 percentile of Iowa’s lakes due Secchi disk readings and Chlorophyll a level. Farming in the watershed is the principle concern and cause for many of the problems occurring in Silver Lake currently with 78% of the watershed being intensively farmed. There are two major drainage ditches that have been used to drain the major wetlands and sloughs that, at one time, filtered the water and slowed it down before it reached Silver Lake. With these two major drainage ditches, water is able to reach the lake much faster and unfiltered than it once did historically. The loss of 255 restorable wetland basins to row crop production has caused serious problems in Silver Lake. These wetland basins once slowed and filtered water as it moved through the watershed. With their loss over the last 50 years that traditional drainage no longer occurs. We propose to create a Wetland Reserve Program incentive project to make WRP a more attractive option to landowners within the watershed. The incentive will be based on the amount of sediment delivery reduction to the lake, therefore paying a greater payment for a greater benefit to the lake. The expected result of this project is the restoration of over 250 acres of wetland basins with an associated 650 acres of upland buffers. The benefit for these wetlands and buffers would be reduced sediment, reduced nutrients, and slowed waters to the lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A water quality resource concern has come to the forefront in the Upper Miller Creek watershed in Black Hawk County after five to seven inches of rain fell on the area on May 22nd and 23rd of 2004 and unprecedented amounts of soil and organic debris were washed from cultivated areas, clogging most culverts and roadside ditches. The quantity of soil deposited in ditches gave a good indication of the amounts that were transported into the stream. The estimated total cost to Black Hawk County for cleanup and repair within the road right-of-way was $345,000. There were undetermined environmental costs incurred when the incredibly high volumes of soil washed from the fields into Miller Creek which flows directly into the Cedar River that is identified by the Department of Natural Resources as an impaired water body. The Upper Miller Creek Watershed Project is an innovative, collaborative project intended to meet a specific need identified by a local steering committee made up of concerned community agencies and local landowners. Led by the Soil and Water Conservation District and the Black Hawk County Board of Supervisors, the Miller Creek Watershed Project seeks to reduce soil erosion, improve water quality, and reduce county road infrastructure cost by implementing conservation practices, reducing nutrient and pesticide use and improving wildlife habitat.