2 resultados para Diagnostic Tests
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Recent construction of new generation power plants burning western coal within Iowa has resulted in fly Ash production on the order of 760,000 tons annually. Although fly ash has long been accepted as a valuable replacement for portland cement in concrete, most experience has been with fly ash generated from eastern bituminous coals. A few years ago, fly ash in Iowa was not a significant factor because production was small and economics dictated disposal as the better alternative than construction use. Today, the economic climate, coupled with abundance of the material, makes constructive use in concrete feasible. The problem is, however, fly ash produced from new power plants is different than that for which information was available. It seems fly ash types have outgrown existing standards. The objective of this study was to develop fundamental information about fly ashes available to construction in Iowa such that its advantages and limitations as replacement to portland cement can be defined. Evaluative techniques used in this work involve sophisticated laboratory equipment, not readily available to potential fly ash users, so a second goal was preliminary development of rapid diagnostic tests founded on fundamental information. Lastly, Iowa Department of Transportation research indicated an interesting interdependency among coarse aggregate type, fly ash and concrete's resistance to freeze-thaw action. Thus a third charge of this research project was to verify and determine the cause for the phenomena. One objective of this project was to determine properties of Iowa fly ashes and evaluate their relevance to use of the material as an admixture of PCC. This phase of the research involved two approaches. The first involved the development of a rapid method for determining quantitative elemental composition while the second was aimed at both qualitative and quantitative determination of compounds. X-ray fluorescence techniques were adapted for rapid determination of elemental composition of fly ash. The analysis was performed using a Siemens SR-200 sequential x-ray spectrometer controlled by a PDP-11-03 microcomputer. The spectrometer was equipped with a ten sample specimen chamber and four interchangeable analyzing crystals. Unfiltered excitation radiation was generated using a chromium tube at 50 KV and 48 ma. Programs for the spectrometer were developed by the Siemens Corporation.
Resumo:
The overarching goal of this project was to identify and evaluate cognitive and behavioral indices that are sensitive to sleep deprivation and may help identify commercial motor vehicle drivers (CMV) who are at-risk for driving in a sleep deprived state and may prove useful in field tests administered by officers. To that end, we evaluated indices of driver physiognomy (e.g., yawning, droopy eyelids, etc.) and driver behavioral/cognitive state (e.g. distracted driving) and the sensitivity of these indices to objective measures of sleep deprivation. The measures of sleep deprivation were sampled on repeated occasions over a period of 3.5-months in each of 44 drivers diagnosed with Obstructive Sleep Apnea (OSA) and 22 controls (matched for gender, age within 5 years, education within 2 years, and county of residence for rural vs. urban driving). Comprehensive analyses showed that specific dimensions of driver physiognomy associated with sleepiness in previous research and face-valid composite scores of sleepiness did not: 1) distinguish participants with OSA from matched controls; 2) distinguish participants before and after PAP treatment including those who were compliant with their treatment; 3) predict levels of sleep deprivation acquired objectively from actigraphy watches, not even among those chronically sleep deprived. Those findings are consistent with large individual differences in driver physiognomy. In other words, when individuals were sleep deprived as confirmed by actigraphy watch output they did not show consistently reliable behavioral markers of being sleep deprived. This finding held whether each driver was compared to him/herself with adequate and inadequate sleep, and even among chronically sleep deprived drivers. The scientific evidence from this research study does not support the use of driver physiognomy as a valid measure of sleep deprivation or as a basis to judge whether a CMV driver is too fatigued to drive, as on the current Fatigued Driving Evaluation Checklist.. Fair and accurate determinations of CMV driver sleepiness in the field will likely require further research on alternative strategies that make use of a combination of information sources besides driver physiognomy, including work logs, actigraphy, in vehicle data recordings, GPS data on vehicle use, and performance tests.