38 resultados para Development of activities
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The purpose of this report is to describe the major research activities during the period of February 1, 1985 - October 30, 1986 for the Iowa Highway Research Board under the research contract entitled "Development of a Conductometric Test for Frost Resistance of Concrete." The objective of this research, as stated in the project proposal, is to develop a test method which can be reasonably rapidly performed in the laboratory and in the field to predict the behavior of concrete subjected to the action of alternate freezing and thawing with a high degree of certainty. In the work plan of the proposal it was stated that the early part of the first year would be devoted to construction of testing equipment and preparation of specimens and the remainder of the year would be devoted to the testing of specimens. It was also stated that the second and third years would be devoted to performance and refinements of tests, data analysis, preparation of suggested specifications, and performance of tests covering variables which need to be studied such as types of aggregates, fly ash replacements and other admixtures. The objective of this report is to describe the progress made during the first 20 months of this project and assess the significance of the results obtained thus far and the expected significance of the results obtainable during the third year of the project.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1985 through November 31, 1986. Research efforts for the first year have proceeded basically as outlined in the project proposal.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.
Resumo:
Research activities during this period concentrated on continuation of field and laboratory testing for the Dallas County test road. Stationary ditch collection of dust was eliminated because of inconsistent data, and because of vandalism to collectors. Braking tests were developed and initiated to evaluate the influence of treatments on braking and safety characteristics of the test sections. Dust testing was initiated for out of the wheelpath conditions as well as in the wheelpath. Contrary to the results obtained during the summer and fall of 1987, the 1.5 percent bentonite treatment appears to be outperforming the other bentonite treated sections after over a year of service. Overall dust reduction appears to average between 25 to 35 percent. Dallas County applied 300 tons per mile of class A roadstone maintenance surfacing to the test road in August 1988. Test data indicates that the bentonite is capable of interacting and functioning to reduce dust generation of the new surfacing material. Again, the 1.5 percent bentonite treatment appeared the most effective. The fine particulate bonding and aggregation mechanism of the bentonite appears recoverable from the environmental effects of winter, and from alternating wet and dry road surface conditions. The magnesium chloride treatment appears capable of long-term (over one year) dust reduction and exhibited an overall average reduction in the range of 15 to 30 percent. The magnesium chloride treatment also appears capable of interacting with newly applied crushed stone to reduce dust generation. Two additional one mile test roads were to have been constructed early this year. Due to an extremely dry spring and summer, construction scheduling was not possible until August. This would have allowed only minimal data collection. Considering this and the fact that this was an atypically dry summer, it was our opinion that it would be in the best interest of the research project to extend the project (at no additional cost) for a period of one year. The two additional test roads will be constructed in early spring 1989 in Adair and Marion counties.
Resumo:
Final report produced by DOT on development of manual crack quantification and automatic crack measurment system.
Resumo:
The research presented in this report provides the basis for the development of a new procedure to be used by the Iowa DOT and cities and counties in the state to deal with detours. Even though the project initially focused on investigating new tools to determine condition and compensation, the focus was shifted to traffic and the gas tax method to set the basis for the new procedure. It was concluded that the condition-based approach, even though accurate and consistent condition evaluations can be achieved, is not feasible or cost effective because of the current practices of data collection (two-year cycle) and also the logistics of the procedure (before and after determination). The gas tax method provides for a simple, easy to implement, and consistent approach to dealing with compensation for use of detours. It removes the subjectivity out of the current procedures and provides for a more realistic (traffic based) approach to the compensation determination.
Resumo:
Report by Iowa Department of Transportation about pavements materials.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Although Iowa has some of the most productive agricultural land in the nation, it also maintains a very extensive road network.Consequently, landowners and roadway officials often must deal with drainage issues affecting private lands and public highways. However, many individuals are unfamiliar with legal drainage requirements, practices, and procedures, which can result in misunderstandings concerning maintenance responsibilities for drainage facilities, sometimes leading to litigation. To assist propertyowners, public agencies, and others with interest in better understanding drainage maintenance responsibilities, a reference manual was developed to describe Iowa’s drainage laws and offer interpretations in a clear and concise manner. To develop a comprehensive drainage manual, researchers identified and reviewed current available literature. These resources described pertinent drainage issues and presented explanations of legal responsibilities. The literature review included manuals and guides from Iowa, surrounding states, and federal agencies. Researchers developed a survey to assess the needs and interestsof potential users of an Iowa drainage law manual. Survey responses were used to identify common problems and concerns among individuals who encounter drainage issues on a regular basis. Issues mentioned in the survey responses included interpretation of drainage laws and commonly encountered questions relating to public improvements and private interests. Many individuals, including county engineers, stated interest in specific topics such as maintenance and/or diversion of drainage, landowner issues, and upstream and downstream impacts. Overall, the survey provided researchers with valuable information regarding drainage issues, problems, current policies, and concerns. A comprehensive manual of Iowa drainage law will assist agencies and individuals in interpreting current code requirements and in implementing effective and beneficial solutions when dealing with drainage issues.
Resumo:
The purpose of this research was to summarize existing nondestructive test methods that have the potential to be used to detect materials-related distress (MRD) in concrete pavements. The various nondestructive test methods were then subjected to selection criteria that helped to reduce the size of the list so that specific techniques could be investigated in more detail. The main test methods that were determined to be applicable to this study included two stress-wave propagation techniques (impact-echo and spectral analysis of surface waves techniques), infrared thermography, ground penetrating radar (GPR), and visual inspection. The GPR technique was selected for a preliminary round of “proof of concept” trials. GPR surveys were carried out over a variety of portland cement concrete pavements for this study using two different systems. One of the systems was a state-of-the-art GPR system that allowed data to be collected at highway speeds. The other system was a less sophisticated system that was commercially available. Surveys conducted with both sets of equipment have produced test results capable of identifying subsurface distress in two of the three sites that exhibited internal cracking due to MRD. Both systems failed to detect distress in a single pavement that exhibited extensive cracking. Both systems correctly indicated that the control pavement exhibited negligible evidence of distress. The initial positive results presented here indicate that a more thorough study (incorporating refinements to the system, data collection, and analysis) is needed. Improvements in the results will be dependent upon defining the optimum number and arrangement of GPR antennas to detect the most common problems in Iowa pavements. In addition, refining highfrequency antenna response characteristics will be a crucial step toward providing an optimum GPR system for detecting materialsrelated distress.
Resumo:
Pozzolans and slag extend the market for concrete products by improving specific properties of the products, which allows the products to be constructed with materials or placed in environments that would have precluded the use of portland cement alone. In properly formulated concrete mixes, pozzolans and slag have been shown to enhance long-term strength, decrease permeability, increase durability, reduce thermal cracking of mass concrete, minimize or eliminate cracking related to alkali-silica reaction (ASR), and minimize or eliminate cracking related to sulfate attack. The purpose of this research project was to conduct a scoping study that could be used to evaluate the need for additional research in the area of supplementary cementitious materials (SCMs) that are used in concrete for highway applications. Special emphasis was given to the concept of using two or more SCMs in a single concrete mixture. The scope of the study was limited to a literature survey and panel discussions concerning issues relevant to the project. No laboratory work was conducted for this project. A problem statement with research plan was created that could be used to guide a pooled fund project.
Resumo:
As our nation’s highway system continues to age, asphalt maintenance and rehabilitation techniques have become increasingly important. The deterioration of pavement over time is inevitable. Preventive maintenance is a strategy to extend the serviceable life of a pavement by applying cost-effective treatments that slow the deterioration of pavement and extend its usable life. Thin maintenance surfaces (TMSs) are preventive maintenance techniques that can effectively prolong the life of pavement when applied at an opportune time. Common TMSs include bituminous fog seal, bituminous seal coat, slurry seal, cold in-place recycling (CIR), and micro-surfacing. This research project investigated ways to improve Iowa Statewide Urban Design and Specifications (SUDAS) and Iowa Department of Transportation (DOT) documents regarding asphalt roadway maintenance and rehabilitation. Researchers led an effort to review and help ensure that the documents supporting proper selection, design, and construction for asphalt maintenance and rehabilitation techniques reflect the latest research findings on these processes: seal coating, slurry sealing, micro-surfacing, and fog sealing. Full results of this investigation are included in this report and its appendices. This report also presents a summary of the recommendations based on the study results.
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.