8 resultados para Data compression (Electronic computers)

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary objectives of the Electronic Bulletin Board System (BBS) project were to: (1) Provide an electronic communication tool which would link city and county engineering offices to each other and to other governmental agencies for messaging and data sharing; (2) Provide a dial-up site for reference information or files accessible on-demand; and (3) Provide a "stepping stone" to the world of electronic data transfer, recognizing that most local government employees face a huge complex of technology with limited knowledge of computers and communications tools. The system was designed to be as simple as possible, and to require minimal equipment and software cost to the users. The original system was an Apex 386/25 computer with MS-DOS 5.0 software and the final configuration was an HP Vectra XM Pentium 90 with MS-NT 3.51 and Mustang - Wildcat 5.0 software. The users of the BBS were county engineers and their staff, offices in the central office of the Iowa Department of Transportation (DOT) and Resident Construction Engineers at the Iowa DOT. Much of the activity was between the county engineers, and their staffs, and the Iowa DOT offices with which they have ongoing business activities. The BBS contained files for mapping, Internet e-mail service, Accident Location Analysis System (ALAS) data, Iowa DOT bid lettings, and Autocad and Intergraph maps and standards. The 800 line calls were recorded and gave the best indication of the usage and the trends that were being followed. The usage tended to be higher in the winter months when design activities are occurring and lower in the summer months when the construction is in progress. The project was judged a success. The BBS did provide a "stepping stone" to the world of electronic data transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large percentage of bridges in the state of Iowa are classified as structurally or fiinctionally deficient. These bridges annually compete for a share of Iowa's limited transportation budget. To avoid an increase in the number of deficient bridges, the state of Iowa decided to implement a comprehensive Bridge Management System (BMS) and selected the Pontis BMS software as a bridge management tool. This program will be used to provide a selection of maintenance, repair, and replacement strategies for the bridge networks to achieve an efficient and possibly optimal allocation of resources. The Pontis BMS software uses a new rating system to evaluate extensive and detailed inspection data gathered for all bridge elements. To manually collect these data would be a highly time-consuming job. The objective of this work was to develop an automated-computerized methodology for an integrated data base that includes the rating conditions as defined in the Pontis program. Several of the available techniques that can be used to capture inspection data were reviewed, and the most suitable method was selected. To accomplish the objectives of this work, two userfriendly programs were developed. One program is used in the field to collect inspection data following a step-by-step procedure without the need to refer to the Pontis user's manuals. The other program is used in the office to read the inspection data and prepare input files for the Pontis BMS software. These two programs require users to have very limited knowledge of computers. On-line help screens as well as options for preparing, viewing, and printing inspection reports are also available. The developed data collection software will improve and expedite the process of conducting bridge inspections and preparing the required input files for the Pontis program. In addition, it will eliminate the need for large storage areas and will simplify retrieval of inspection data. Furthermore, the approach developed herein will facilitate transferring these captured data electronically between offices within the Iowa DOT and across the state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• Examine current pile design and construction procedures used by the Iowa Department of Transportation (DOT). • Recommend changes and improvements to these procedures that are consistent with available pile load test data, soils information, and bridge design practice recommended by the Load and Resistance Factor Design (LRFD) approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation is committed to improved management systems, which in turn has led to increased automation to record and manage construction data. A possible improvement to the current data management system can be found with pen-based computers. Pen-based computers coupled with user friendly software are now to the point where an individual's handwriting can be captured and converted to typed text to be used for data collection. It would appear pen-based computers are sufficiently advanced to be used by construction inspectors to record daily project data. The objective of this research was to determine: (1) if pen-based computers are durable enough to allow maintenance-free operation for field work during Iowa's construction season; and (2) if pen-based computers can be used effectively by inspectors with little computer experience. The pen-based computer's handwriting recognition was not fast or accurate enough to be successfully utilized. The IBM Thinkpad with the pen pointing device did prove useful for working in Windows' graphical environment. The pen was used for pointing, selecting and scrolling in the Windows applications because of its intuitive nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This phase of the research project involved two major efforts: (1) Complete the implementation of AEC-Sync (formerly known as Attolist) on the Iowa Falls Arch Bridge project and (2) develop a web-based project management system (WPMS) for projects under $10 million. For the first major effort, AEC-Sync was provided for the Iowa Department of Transportation (DOT) in a software as a service agreement, allowing the Iowa DOT to rapidly implement the solution with modest effort. During the 2010 fiscal year, the research team was able to help with the implementation process for the solution. The research team also collected feedback from the Broadway Viaduct project team members before the start of the project and implementation of the solution. For the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The result of the AEC-Sync implementation in the Broadway Viaduct project was a positive one. The project members were satisfied with the performance of AEC-Sync and how it facilitated document management and transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge project. During the 2012 fiscal year, the research team analyzed the post-project surveys for the Iowa Falls Arch Bridge project AEC-Sync implementation and found a positive outcome when compared to the pre-project surveys. The second major effort for this project involved the identification and implementation of a WPMS solution for smaller bridge and highway projects. During the 2011 fiscal year, Microsoft SharePoint was selected to be implemented on these smaller highway projects. In this year, workflows for the shop/working drawings for the smaller highway projects specified in Section 1105 of the Iowa DOT Specifications were developed. These workflows will serve as the guide for the development of the SharePoint pages. In order to implement the Microsoft SharePoint pages, the effort of an integrated team proved to be vital because it brought together the expertise required from researchers, programmers, and webpage developers to develop the SharePoint pages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the first year of research, work was completed to identify Iowa DOT needs for web-based project management system (WPMS) and evaluate how commercially available solutions could meet these needs. Researchers also worked to pilot test custom developed WPMS solutions on Iowa DOT bridge projects. At the end of the first year of research, a Request for Proposals (RFP) was developed and issued by the Iowa DOT for the selection of a commercial WPMS to pilot test on multiple bridge projects. During the second year of research, the responses to the RFP issued during the first year of research were evaluated and a solution was selected. The selected solution, Attolist, was customized, tested, and implemented during the fall of 2009. Beginning in the winter of 2010, the solution was implemented on Iowa DOT projects. Researchers worked to assist in the training, implementation, and performance evaluation of the solution. Work will continue beyond the second year of research to implement Attolist on an additional pilot project. During this time, work will be completed to evaluate the impact of WPMS on Iowa DOT bridge projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.