24 resultados para Damage of flood

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating flood frequency discharges. Multi-variable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantification. The multi-variable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantification of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantification. Median differences between manual measurements and GIS quantification of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantification indicate that use of GIS values of MCS for Region 3 substantially underestimate flood discharges. Mean and median percentage differences for 2- to 500-year recurrence-interval flood discharges ranged from 5.0 to 5.3 and 4.3 to 4.5 percent, respectively, for Region 2 and ranged from 18.3 to 27.1 and 12.3 to 17.3 percent for Region 3. The MCS curves developed from GIS quantification were adjusted by 14.8 percent for streams located in Region 2 and by 17.7 percent for streams located in Region 3. Comparisons of percentage differences between flood discharges calculated using MCS values of manual measurements and adjusted-GIS quantification for Regions 2 and 3 indicate that the flood-discharge estimates are comparable. For Region 2, mean percentage differences for 2- to 500-year recurrence-interval flood discharges ranged between 0.6 and 0.8 percent and median differences were 0.0 percent. For Region 3, mean and median differences ranged between 5.4 to 8.4 and 0.0 to 0.3 percent, respectively. A list of selected stream sites presented with each curve provides information about the sites including river miles, drainage areas, the location of U.S. Geological Survey stream flowgage stations, and the location of streams Abstract crossing hydro logic region boundaries or the Des Moines Lobe landforms region boundary. Two examples are presented for determining river-mile and MCS values, and two techniques are presented for computing flood-frequency discharges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project HR-3 of the Iowa Highway Research Board has been active since October 1, 1950. The project objective is the determination of flood discharge characteristics of small drainage areas. Funds for the project amount to $10,000 per year of which, by cooperative agreement, the Highway Commission and the U. S. Geological Survey each furnish $5,000. Previous reports have explained the set-up of the project and these explanations will not be repeated in this report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this project was to assess the predictive accuracy of flood frequency estimation for small Iowa streams based on the Rational Method, the NRCS curve number approach, and the Iowa Runoff Chart. The evaluation was based on comparisons of flood frequency estimates at sites with sufficiently long streamgage records in the Midwest, and selected urban sites throughout the United States. The predictive accuracy and systematic biases (under- or over-estimation) of the approaches was evaluated based on forty-six Midwest sites and twenty-one urban sites. The sensitivity of several watershed characteristics such as soil properties, slope, and land use classification was also explored. Recommendations on needed changes or refinements for applications to Iowa streams are made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this research was to evaluate the materials Iowa uses as a granular subbase and to determine if it provides adequate drainage. Numerous laboratory and in-situ tests were conducted on the materials currently being used in Iowa. The follow conclusions can be made based on the test results: 1. The crushed concrete that is used as a subbase material has a relatively low permeability compared to many other materials used by other states. 2. Further research and tests are needed to find the necessary parameters for crushed concrete to make sure it is providing its optimum drainage and preventing premature damage of the pavement. 3. We have definitely made improvements in drainage in the past few months, but there are many areas that we can improve on that will increase the permeability of this material and insure that the pavement system is safe from premature damage due to water. The current gradation specification for granular subbase material at the start of this study was: Sieve # % Passing 1” 100 #8 10-35 #50 0-15 #200 0-6

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Severe flooding occurred during July 19-25, 1999, in the Wapsipinicon and Cedar River Basins following two thunderstorms over northeast Iowa. During July 18-19, as much as 6 inches ofrainfall was centered over Cerro Gordo, Floyd, Mitchell, and Worth Counties. During July 20-21, a second storm occurred in which an additional rainfall of as much as 8 inches was centered over Chickasaw and Floyd Counties. The cumulative effect of the storms produced floods with new maximum peak discharges at the following streamflow-gaging stations: Wapsipinicon River near Tripoli, 19,400 cubic feet per second; Cedar River at Charles City, 31,200 cubic feet per second (recurrence interval about 90 years); Cedar River at Janesville, 42,200 cubic feet per second (recurrence interval about 80 years); and Flood Creek near Powersville, 19,000 cubic feet per second. Profiles of flood elevations for the July 1999 flood are presented in this report for selected reaches along the Wapsipinicon, Cedar, and Shell Rock Rivers and along Flood Creek. Information about the river basins, rain storms, and flooding are presented along with information on temporary bench marks and reference points in the Wapsipinicon and Cedar River Basins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In June 2008, the University of Iowa (UI) campus experienced severe flooding and major damage to campus facilities. This report summarizes information provided by the UI on flood recovery as of August 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research presented in this report provides the basis for the development of a new procedure to be used by the Iowa DOT and cities and counties in the state to deal with detours. Even though the project initially focused on investigating new tools to determine condition and compensation, the focus was shifted to traffic and the gas tax method to set the basis for the new procedure. It was concluded that the condition-based approach, even though accurate and consistent condition evaluations can be achieved, is not feasible or cost effective because of the current practices of data collection (two-year cycle) and also the logistics of the procedure (before and after determination). The gas tax method provides for a simple, easy to implement, and consistent approach to dealing with compensation for use of detours. It removes the subjectivity out of the current procedures and provides for a more realistic (traffic based) approach to the compensation determination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: "Look Before You Lease!"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report summarises the statewide efforts in dealing with the disaster of the floods of 1993.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report summarises the statewide efforts in dealing with the disaster of the floods of 1993.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Flood Plain Management and Hazard Mitigation Task Force emphasizes the long-term benefits of mitigation and management to the entire state in preventing or reducing damages from floods and other hazards faced in Iowa. Investments in efforts to manage watershed areas and to mitigate any damages from floods or other disaster events benefit individuals, families, communities, agriculture, business and industry, and certainly public entities and infrastructure. The Task Force encourages the Rebuild Iowa Advisory Commission to balance the immediate needs for rebuilding to include the beginning of the investments required to effectively mitigate future damage and maintain effective policy in Iowa’s watersheds. The significance of the damage seen in Iowa from the tornadoes, storms, and floods of 2008 include the loss of eighteen Iowans in disaster-related events. This alone should inspire investment in mitigation efforts for all hazards. Much of the damage resulting from the disasters can be tied to floodplain management and hazard mitigation, pointing the way toward enhanced efforts and new initiatives to safeguard lives, property, and communities’ economic health. Even so, it must be recognized that the weather events throughout last winter and spring added impetus to the rains and storms that ultimately resulted in record flooding. Some perspective must be maintained as planning progresses and significant investments in mitigation are considered to meet a specific level of safety and protection from future threats. The Task Force identified a number of issues, and four were agreed-upon as those with the highest priority to be addressed by the Task Force through a set of recommendations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Flood Plain Management and Hazard Mitigation Task Force emphasizes the long-term benefits of mitigation and management to the entire state in preventing or reducing damages from floods and other hazards faced in Iowa. Investments in efforts to manage watershed areas and to mitigate any damages from floods or other disaster events benefit individuals, families, communities, agriculture, business and industry, and certainly public entities and infrastructure. The Task Force encourages the Rebuild Iowa Advisory Commission to balance the immediate needs for rebuilding to include the beginning of the investments required to effectively mitigate future damage and maintain effective policy in Iowa’s watersheds. The significance of the damage seen in Iowa from the tornadoes, storms, and floods of 2008 include the loss of eighteen Iowans in disaster-related events. This alone should inspire investment in mitigation efforts for all hazards. Much of the damage resulting from the disasters can be tied to floodplain management and hazard mitigation, pointing the way toward enhanced efforts and new initiatives to safeguard lives, property, and communities’ economic health. Even so, it must be recognized that the weather events throughout last winter and spring added impetus to the rains and storms that ultimately resulted in record flooding. Some perspective must be maintained as planning progresses and significant investments in mitigation are considered to meet a specific level of safety and protection from future threats. The Task Force identified a number of issues, and four were agreed-upon as those with the highest priority to be addressed by the Task Force through a set of recommendations. Supplemental Information to the August 2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There have been a multitude of programs providing assistance to the state of Iowa in the past 18 months. Springtime 2008 disasters resulted in tornado damage and widespread flood damage to large fractions of the state. In consequence, there was a very large flow of federal and state resources dedicated to assisting community and statewide recovery efforts. The nation was in recession as well and continued to be in recession through much of 2009. A sizeable amount of assistance found its way to Iowa under the American Recovery and Reinvestment Act of 2009 in the forms of infrastructure stimulus spending, income supports and other safety net spending for households, and stabilization assistance for essential public services like education. On top of that, the state of Iowa authorized the I Jobs program as an additional infrastructure development program, and as a jobs stimulus program. The total amount of spending for all types of programs, disaster or economic recovery related, is perhaps as high as $7.5 billion over the next few years.