31 resultados para DRIVING BEHAVIOR

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excessive daytime sleepiness underpins a large number of the reported motor vehicle crashes. Fair and accurate field measures are needed to identify at-risk drivers who have been identified as potentially driving in a sleep deprived state on the basis of erratic driving behavior. The purpose of this research study was to evaluate a set of cognitive tests that can assist Motor Vehicle Enforcement Officers on duty in identifying drivers who may be engaged in sleep impaired driving. Currently no gold standard test exists to judge sleepiness in the field. Previous research has shown that Psychomotor Vigilance Task (PVT) is sensitive to sleep deprivation. The first goal of the current study was to evaluate whether computerized tests of attention and memory, more brief than PVT, would be as sensitive to sleepiness effects. The second goal of the study was to evaluate whether objective and subjective indices of acute and cumulative sleepiness predicted cognitive performance. Findings showed that sleepiness effects were detected in three out of six tasks. Furthermore, PVT was the only task that showed a consistent slowing of both ‘best’, i.e. minimum, and ‘typical’ responses, median RT due to sleepiness. However, PVT failed to show significant associations with objective measures of sleep deprivation (number of hours awake). The findings indicate that sleepiness tests in the field have significant limitations. The findings clearly show that it will not be possible to set absolute performance thresholds to identify sleep-impaired drivers based on cognitive performance on any test. Cooperation with industry to adjust work and rest cycles, and incentives to comply with those regulations will be critical components of a broad policy to prevent sleepy truck drivers from getting on the road.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Construction zones pose a significant threat to both workers and drivers causing numerous injuries and deaths each year. Innovations in work zone safety could reduce these numbers. However, implementing work zone interventions before they are validated can undermine rather than enhance safety. The objective of this research is to demonstrate how driving simulators can be used to evaluate the effect of various work zone interventions on driver performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturalistic driving studies are the latest resource for gathering data associated with driver behavior. The University of Iowa has been studying teen driving using naturalistic methods since 2006. By instrumenting teen drivers’ vehicles with event-triggered video recorders (ETVR), we are able to record a 12-second video clip every time a vehicle exceeds a pre-set g-force threshold. Each of these video clips contains valuable data regarding the frequency and types of distractions present in vehicles driven by today’s young drivers. The 16-year old drivers who participated in the study had a distraction present in nearly half of the events that were captured. While a lot of attention has been given to the distractions associated with technology in the vehicle (cell phones, navigation devices, entertainment systems, etc.), the most frequent type of distraction coded was the presence of teen passengers engaging in conversation (45%). Cognitive distractions, such as singing along with the radio, were the second most common distraction. Cell phone use was the third most common distraction, detected in only 10% of the events containing distraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rural intersections account for 30% of crashes in rural areas and 6% of all fatal crashes, representing a significant but poorly understood safety problem. Transportation agencies have traditionally implemented countermeasures to address rural intersection crashes but frequently do not understand the dynamic interaction between the driver and roadway and the driver factors leading to these types of crashes. The Second Strategic Highway Research Program (SHRP 2) conducted a large-scale naturalistic driving study (NDS) using instrumented vehicles. The study has provided a significant amount of on-road driving data for a range of drivers. The present study utilizes the SHRP 2 NDS data as well as SHRP 2 Roadway Information Database (RID) data to observe driver behavior at rural intersections first hand using video, vehicle kinematics, and roadway data to determine how roadway, driver, environmental, and vehicle factors interact to affect driver safety at rural intersections. A model of driver braking behavior was developed using a dataset of vehicle activity traces for several rural stop-controlled intersections. The model was developed using the point at which a driver reacts to the upcoming intersection by initiating braking as its dependent variable, with the driver’s age, type and direction of turning movement, and countermeasure presence as independent variables. Countermeasures such as on-pavement signing and overhead flashing beacons were found to increase the braking point distance, a finding that provides insight into the countermeasures’ effect on safety at rural intersections. The results of this model can lead to better roadway design, more informed selection of traffic control and countermeasures, and targeted information that can inform policy decisions. Additionally, a model of gap acceptance was attempted but was ultimately not developed due to the small size of the dataset. However, a protocol for data reduction for a gap acceptance model was determined. This protocol can be utilized in future studies to develop a gap acceptance model that would provide additional insight into the roadway, vehicle, environmental, and driver factors that play a role in whether a driver accepts or rejects a gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leading cause of death during winter storms is transportation accidents. Preparing your vehicle for the winter season and knowing how to react if stranded or lost on the road are the keys to safe winter driving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leading cause of death during winter storms is transportation accidents. Preparing your vehicle for the winter season and knowing how to react if stranded or lost on the road are the keys to safe winter driving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leading cause of death during winter storms is transportation accidents. Preparing your vehicle for the winter season and knowing how to react if stranded or lost on the road are the keys to safe winter driving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because driving is a complex task, drivers need to be sure they have the mental and physical capacity for driving safely as they experience changes with aging. Most drivers who are aware of their changing capacity to drive can adjust their driving plans and improve their driving habits to drive safer and longer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value of driving We as Americans - and especially as Iowans - value the independence of getting around in our own vehicles and staying connected with our families and communities. The majority of older Iowans enjoy a more active, healthy and longer life than previous generations. Freedom of mobility shapes our quality of life. With aging, driving becomes an increasing concern for older Iowans and their families. How we deal with changes in our driving ability and, eventually, choose when and how to retire from driving, will affect our safety and our quality of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brochure explains Iowa's laws concerning the use of cell phones and other electronic communication devices while driving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In April 1991 the Iowa Department of Transportation, the CNW Transportation Company, the SOO Line, and local agencies and business in the Mason City/Clear Lake area initiated an Operation Lifesaver program to attempt to increase public awareness of safety issues and safe behavior at railroad-highway grade crossings. This document reports an initial study of data on traffic characteristics at a selected set of grade crossings in Cerro Gordo County taken before and after the safety program. Twenty-two crossings were studied. The 13 crossings at which collisions were reported for the five years prior to the study were included in the sample of sites. Two field observations were made at each study crossing before the Operation Lifesaver campaign was in full swing, and two observations were made after the conclusion of the main effort of the campaign. The summary of each data set is contained in a companion volume. The research shows that Operation Lifesaver altered drivers' behavior in the following ways: (1) reduced approach speeds and crossing speeds at crossings with low speed limits, (2) reduced the percent of drivers approaching the crossing at speeds in excess of the posted speed limit, and (3) increased alertness of drivers to railroad crossing hazards as evidenced by more drivers looking for a clear track. Thus, Operation Lifesaver enhanced safety in street and highway traffic operations in the vicinity of railroad-highway grade crossings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project 540-S of the Iowa Engineering Experiment Station (Project HR-107, Iowa Highway Research Board) was started in June, 1964. During the year ten 2-gallon samples of asphalt cement and ten 100-lb samples of asphaltic concrete were studied by the personnel of the Bituminous Research Laboratory, Iowa State University. The samples were from tanks and mixers of asphalt plants at various Iowa State Highway Commission paving jobs. The laboratory's research was in two phases: 1. To ascertain if properties of asphalt cement changed during mixing operations. 2. To determine whether one or more of the several tests of asphalt cements were enough to indicate behavior of the heated asphalt cements. If the reliability of one or more tests could be proved, the behavior of asphalts would be more simply and rapidly predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highway departments of all fifty states were contacted to find the extent of application of integral abutment bridges, to survey the different guidelines used for analysis and design of integral abutment bridges, and to assess the performance of such bridges through the years. The variation in design assumptions and length limitations among the various states in their approach to the use of integral abutments is discussed. The problems associated with lateral displacements at the abutment, and the solutions developed by the different states for most of the ill effects of abutment movements are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure was developed and used to study piling stresses and pile-soil interaction in integral abutment bridges. The finite element idealization consists of beam-column elements with geometric and material nonlinearities for the pile and nonlinear springs for the soil. An idealized soil model (modified Ramberg-Osgood model) was introduced in this investigation to obtain the tangent stiffness of the nonlinear spring elements. Several numerical examples are presented in order to establish the reliability of the finite element model and the computer software developed. Three problems with analytical solutions were first solved and compared with theoretical solutions. A 40 ft H pile (HP 10 X 42) in six typical Iowa soils was then analyzed by first applying a horizontal displacement (to simulate bridge motion) and no rotation at the top and then applying a vertical load V incrementally until failure occurred. Based on the numerical results, the failure mechanisms were generalized to be of two types: (a) lateral type failure and (b) vertical type failure. It appears that most piles in Iowa soils (sand, soft clay and stiff clay) failed when the applied vertical load reached the ultimate soil frictional resistance (vertical type failure). In very stiff clays, however, the lateral type failure occurs before vertical type failure because the soil is sufficiently stiff to force a plastic hinge to form in the pile as the specified lateral displacement is applied. Preliminary results from this investigation showed that the vertical load-carrying capacity of H piles is not significantly affected by lateral displacements of 2 inches in soft clay, stiff clay, loose sand, medium sand and dense sand. However, in very stiff clay (average blow count of 50 from standard penetration tests), it was found that the vertical load carrying capacity of the H pile is reduced by about 50 percent for 2 inches of lateral displacement and by about 20 percent for lateral displacement of 1 inch. On the basis of the preliminary results of this investigation, the 265-feet length limitation in Iowa for integral abutment concrete bridges appears to be very conservative.